2020年贵州南方电网考试行测数量关系答题技巧:巧解不定方程
在行测考试的数量关系当中,经常会遇到题目中出现等量关系,然后让我们利用题中的等量关系来构建方程进行求解的题目,那么这类等量关系构建的方程我们通常可以分为两类,一类是一般方程,另一类是不定方程。一般方程相信大家已经接触的非常多,求解起来也会比较容易,不定方程对于大家来说就可能接触的比较少,会比较陌生了,那么今天长理职培教育给大家讲解一下,什么是不定方程,它又是如何进行求解的。
首先不定方程就是未知数的个数大于独立方程的个数,比如3x+4y=12,这里有两个未知数,但是只有一个方程,所以这里我们把他叫做不定方程,而且可想而知x、y都是有很多组解符合我们题目的要求的。但是行测考试中都是单选题,那么碰到不定方程,我们是如何求解的呢,下面长理职培教育给大家介绍几种常用的方法。
1、整除法
3x+8y=36,已知x、y为正整数,则y=()?
A、1 B、3 C、5 D、7
【长理职培解析】答案:B。这个题目很明显是一个不定方程分题目,但是我们前面说,不定方程应该有无数组解,但是为什么这里只有一组解,可以放在单选题里面,那是因为在题目中有限定,下、y都是正整数,所以这个解就变得有限组解了。那么面对这样的题目我们可以怎么去做呢,第一个大家最容易想到的当然是代入了,将每个选项代入看答案是否合适,这样当然可以,但是我们会发现比较浪费时间,所以我们有了第二种方法我们通过观察这个式子,会发现系数3和常数项36都是3的倍数,那么我们可以知道8y也应该是3的倍数,8不是3的整数倍,那么必然就应该是3的倍数结合选项可知,只有B选项才是符合条件的。这个方法我们叫做整除法,当未知数系数跟常数项有公约数就可以使用。
2、尾数法或奇偶性
4x+5y=23,已知x、y为正整数,求x
A、1 B、2 C、3 D、4
【长理职培解析】那么这道题目我们会发现前面说过的整除法就不适用了,那么这里我们可以使用什么方法呢,还是首先观察系数跟常数项,我们会发现系数有5,那么5y肯定是一个以0或5结尾的数,又因为23是一个奇数,4x是一个偶数,所以5y肯定是一个奇数,一定是5结尾,那么4x肯定要是8结尾才能加成3结尾的数,所以这个题目选B。
以上就是长理职培教育介绍的面对一些常见的不定方程可以常用的方法,那么还有关于不定方程组的解法呢,期待大家继续关注长理职培教育。
首先不定方程就是未知数的个数大于独立方程的个数,比如3x+4y=12,这里有两个未知数,但是只有一个方程,所以这里我们把他叫做不定方程,而且可想而知x、y都是有很多组解符合我们题目的要求的。但是行测考试中都是单选题,那么碰到不定方程,我们是如何求解的呢,下面长理职培教育给大家介绍几种常用的方法。
1、整除法
3x+8y=36,已知x、y为正整数,则y=()?
A、1 B、3 C、5 D、7
【长理职培解析】答案:B。这个题目很明显是一个不定方程分题目,但是我们前面说,不定方程应该有无数组解,但是为什么这里只有一组解,可以放在单选题里面,那是因为在题目中有限定,下、y都是正整数,所以这个解就变得有限组解了。那么面对这样的题目我们可以怎么去做呢,第一个大家最容易想到的当然是代入了,将每个选项代入看答案是否合适,这样当然可以,但是我们会发现比较浪费时间,所以我们有了第二种方法我们通过观察这个式子,会发现系数3和常数项36都是3的倍数,那么我们可以知道8y也应该是3的倍数,8不是3的整数倍,那么必然就应该是3的倍数结合选项可知,只有B选项才是符合条件的。这个方法我们叫做整除法,当未知数系数跟常数项有公约数就可以使用。
2、尾数法或奇偶性
4x+5y=23,已知x、y为正整数,求x
A、1 B、2 C、3 D、4
【长理职培解析】那么这道题目我们会发现前面说过的整除法就不适用了,那么这里我们可以使用什么方法呢,还是首先观察系数跟常数项,我们会发现系数有5,那么5y肯定是一个以0或5结尾的数,又因为23是一个奇数,4x是一个偶数,所以5y肯定是一个奇数,一定是5结尾,那么4x肯定要是8结尾才能加成3结尾的数,所以这个题目选B。
以上就是长理职培教育介绍的面对一些常见的不定方程可以常用的方法,那么还有关于不定方程组的解法呢,期待大家继续关注长理职培教育。
温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)
点击加载更多评论>>