一、普通工程问题:主要结合基本的公式来求解
【例1】某工厂生产一批零件,原计划每天生产100个,因技术改进,实际每天生产120个,结果提前4天完成,还多生产了80个。则工厂原计划生产零件()个
A.2520 B.2600 C.2800 D.2880
【解析】选C。这是一道基本工程问题,设原计划的时间为t,则可通过原来总的工作量建立如下等量关系:100t=120×(t-40)-80,解出t=28,原来的工作量=100t=2800,因此工厂原计划生产零件为2800个;故此题选C。
二、多者合作型:与特值联系会比较紧密
【例2】一项工程如果交给甲乙两队共同施工,12天能完成;如果交给甲丙两队共同施工,10天能完成;如果交给乙丙两队共同施工,20天能完成;如果甲队独立施工,需要多少天完成( )
A.15 B.20 C.24 D.28
【解析】选A。题干中只给了工作时间这一个条件,属于只给定时间还求时间的题型,可用特值。设工作总量为60,则效率甲+乙=5,甲+丙=6,乙+丙=3;可以求出甲的效率为4,则甲的工作时间60/4=15。
【例3】甲、乙、丙三个工程队的效率比为6:5:4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束,问丙队在A工程中参与施工多少天?( )
A.6 B.7 C.8 D.8
【解析】选A。由于这道题直接告诉了甲、乙、丙的效率比,因此直接设甲、乙、丙的效率比为6、5、4,设丙在A工程工作x天,利用A、B工程来那个相同建立等量关系,则有方程 6×16+4x = 5×16+4(16-x),求出x=6。
编辑推荐:

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>