2、设特值
(1)可以设效率为单位1,或是设效率为对应效率比值。
(2)可以设工作总量为单位1,或是对应时间最小公倍数。
二、工程问题常考题型
(一)单人合作
例题:一项工程需要150天完成,现在已经工作30天,剩下的效率提升20%,问:可以提前多少天能完成。
A.10 B.20 C.30 D.40
【解析】答案B。此题可以根据正反比例思想来解决,效率前后之比为5:6,工作总量成反比,所以时间成反比,6:5,时间还剩下120天,所以剩下时间只需要100天,因此可以提前20天。
(二)多人合作型
例题:一项工程,由甲单独做需要10天才可以完成,由乙单独做需要20天才可以完成,由丙做需要30天才可以完成,现在甲乙合作三天,剩下的由丙单独来做,问:一共需要多少天才能完成该项工作?( )
A. 16 B.17 C.19 D.20
【解析】答案为D。解析:由于题目告诉对应时间,所以可设工作总量为对应时间最小公倍数60,因此甲的效率为6,乙的效率为3,丙的效率为2,根据题意甲乙先合作3天干了(6+3)×3=27,剩下工作量为60-27=33。剩下的由丙来干33÷2=16.5天,由于甲乙先干3天,所以3+16.5=19.5天,因此只能选20天。此题容易选16天或是19天,注意16.5不能舍弃0.5天,也要注意是问一共需要多少天。
工程问题中常用特值法,经常将工作量设为"1",或是对应时间最小公倍数,但是特值法应该灵活使用,这样是为了简化计算。
两人或多人合作后,有可能会出现配合不好,各自的工作效率均降低;配合默契,各自的工作效率均提高。解这类问题时,要注意前后工作效率的变化。尤其需要注意这时的三量关系变为:合作后总的工作效率×合作时间=合作完成的工作量。
编辑推荐:

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>