一千多年前的《孙子算经》中,有这样一道算术题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?这就是我们所知中国剩余定理。
一般剩余问题的通用形式:一个数除以a余x,除以b余y,除以c余z,其中a、b、c两两互质,求满足该条件的最小数。
应用类型:
(1)余同加余:题干出现余数相同,即x=y=z,则满足的数是[a、b、c]n+x,[a、b、c]表示为a、b、c最小公倍数。
(2)差同减差:题干出现每组除数和余数差相同,即a-x=b-y=c-z,则满足的数是[a、b、c]n-(a-x)。
(3)和同加和:题干出现每组除数和余数和相同,即a-x=b-y=c-z,则满足的数是[a、b、c]n+(a-x)。
(4)逐步满足法:不存在上述情况下,从最大量开始尝试。
以下结合例题,讲解如何利用剩余定理解题。
【例1】:三位运动员跨台阶,台阶总数在 100-150 级之间,第一位运动员每次跨 3 级台阶,最后一步还剩 2 级台阶。第二位运动员每次跨 4 级台阶,最后一步还剩 3 级台阶。第三位运动员每次跨 5 级台阶,最后一步还剩 4 级台阶。问:这些台阶总共有多少级?
A.119 B.121 C.129 D.131
【答案】 A。
【解析】由题干的差相同,则若多 1 级台阶,则运动员每次跨 3、 4、 5 级,均正好跨完所有台阶,即台阶数加 1 是 3、 4、 5 的倍数,所以台阶数可表示为 60n-1( n 为正整数),结合选项可知答案为 A。当然此题也可代入。
编辑推荐:

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>