【例1】:400人中至少有两个人的生日相同.
解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.
又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.
"从任意5双手套中任取6只,其中至少有2只恰为一双手套。"
"从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。"
【例2】:一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一色的球?
抽屉原理的解法:首先找元素的总量(此题35)
其次找抽屉的个数:白、黄、红、蓝、绿5个
最后,考虑最差的情况。每种抽屉先m-1个球。最后的得数再加上1,即为所求
【例3】:一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最
少抽几张牌,才能保证有4张牌是同一种花色的元素总量13*4
抽屉4个,m=4
抽屉数*(m-1)=12,12+1=13 例4:从一副完整的扑克牌中.至少抽出( )张牌.才能保证至少 6 张牌的花色相同?
元素总量=54
抽屉=6(大小王各为一个抽屉),M=6
编辑推荐:

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>