电话:0731-83595998
导航

2019内蒙古国家电网笔试行测备考技巧(六十七)

来源: 2018-06-14 08:53

 在三次列队后,韩信是如何算出了士兵的人数?这其中又蕴含着怎样的道理呢?我们把"韩信点兵"故事中涉及到数学关系提炼出来,得到如下表述:有一个介于1000-1100之间的四位数,它除以3余数是2,除以5余数是3,除以7余数是2,那么这个数是几?此类问题被称之为"剩余问题",在国家公务员行测考试中也时常出现。

(一)特殊模型

1.余同加余

若多个除式的被除数相同,余数也相同,那么这个被除数的值等于多个除数的最小公倍数加余数。如:X÷3余1,X÷5余1,那么X=15k+1。

例1.三位数的自然数P满足:除以7余2,除以6余2,除以5也余2,则符合条件的自然数P有:( )

A.2个 B.3个 C.4个 D.5个

【答案】C。

【解析】3个除式的被除数相同,均为自然数P,余数都是2,而除数7、6、5的最小公倍数是210,根据余同加余可得,P=210k+2。再结合题意,P是三位数,有100≤210k+2≤999,k可取值1、2、3、4,所以符合条件的P有4个,答案选C。

2.和同加和

若多个除式的被除数相同,除数和余数的和也相同,那么这个被除数的值等于多个除数的最小公倍数加"除数和余数的和"。如:X÷3余2,X÷4余1,那么X=12k+5。

例2.有一箱水蜜桃二百多个,每堆10个多3枚,每堆12个则余1个。则这箱水蜜桃有多少个?( )

A.243个 B.253个 C.263个 D. 273个

【答案】B。

【解析】两个除式的被除数相同,均为水蜜桃的个数,记为X,两式"除数加余数的和"均为13,而除数10、12的最小公倍数是60,根据和同加和可得,X=60k+13。再结合题意,可知200< 60k+13< 300,k只能取4,所以X=60×4+13=253,答案选B。

3.差同减差

若两个除式的被除数相同,除数和余数的差也相同,那么这个被除数的值等于两个除数的最小公倍数减去"除数和余数的差"。如:X÷3余2,X÷4余3,那么X=12k-1。

例3.有一个小于200的正整数m,它除以11余8,除以13余10,则2m-80=( )

A.158 B.200 C.226 D. 244

【答案】B。

 

【解析】两个除式的被除数相同,均为m,两式"除数与余数的差"均为3,而除数11、13的最小公倍数是143,根据差同减差可得,m=143k-3。由题可知0

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端