一、隔板模型的本质
要想利用隔板模型必须知道其本质,就是“同素分堆”。所谓“同素”就是这些元素无论从颜色、大小、形状等各种属性全部相同的元素。一般题目中会出现分发相同材料、电脑、名额等。
二、隔板模型的公式
把n个相同元素分给m个不同的对象,每个对象至少分到1个元素,问有多少种不同分法,则有C(m-1,n-1)。
三、隔板模型的条件
这类问题模型的使用前提相当严格,必须同时满足以下2个条件:
1. 所要分的元素必须完全相同。
2. 每个对象至少分到1个元素。
若第2个条件不能满足时,则需要转化为第2个条件再利用隔板模型。
四、隔板模型的应用
【例题1】公司新购买了型号完全相同的9台电脑,要分给3个科室,如果要求每个科室至少分到1台电脑,问一共有多少种发放方式?
A.28 B.44 C.56 D.72
【解析】相同元素满足,则问法刚好符合第2个条件“每个对象至少分到1个元素”,所以直接上隔板模型,C(3-1,9-1)=C(2,8)=28,故选A。
但如果问法和条件2不符的时候,又该如何做呢?那我们继续看例题2。
编辑推荐:

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>