人工智能纯技术和算法的投资机会已经过去,目前机会在场景和技术融合的碎片化深度应用阶段。目前推动人工智能发展的是需求与场景,当今时代的快速发展,场景与需求发生着变化,传统产业成本高、效率低、招工难等弊端的频繁暴露,推动着传统产业智能化升级的脚步,将机器自动化不仅能够提高产业发展的效率,更可以实现产业的升级换代,形成新业态,催生新的经济增长点。
比如,在传统纺织行业,人工智能就起到了很好的推动作用。该行业原来的生产力低下,主要原因在于原来的纺织技术多半仍旧依赖于传统手工生产、制作及检验。人工验布的缺点是精度低、速度慢和招工难,所以数字化、智能化的改造势在必行。
计算存储一体化突破人工智能算力瓶颈
◎清华大学长聘教授尹首一:
回顾集成电路发展历程,存储器芯片的发展速度远低于处理器芯片的发展速度,两者之间的缺口仍在不断拉大,存储墙成为制约处理器性能进一步提升的主要瓶颈之一。这一问题尤其对访存密集型任务影响最为明显,以深度神经网络为代表的AI算法恰好具有访存密集的特点。
从物理本质角度来讲,拉近计算部件与存储部件的距离,减少单位数据搬运的成本,是解决存储墙问题的根本手段。近存计算、存内计算和存算融合都是解决存储墙问题的有益尝试。近年来,相关技术百花齐放、百家争鸣,尚属于竞争前技术。在新器件、新机理、新电路、新架构方面的突破,将有望带来颠覆性变革。
编辑推荐:

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>