在冯诺依曼架构下,“存储墙”即中央处理器和存储器之间的性能鸿沟一直是困扰计算系统的瓶颈问题。对于人工智能这类海量数据所驱动的应用,传统架构的缺陷更加暴露无遗,其算力完全受制于访存带宽,同时总体功耗因计算与存储之间的高带宽数据流动而急剧飙升。
将数据存储和计算相融合的存内计算技术是解决这一困境的重要途径,它将成为突破AI算力瓶颈的关键抓手之一。传统架构的优势是其相对成熟的工具链和可靠的设计流程,因此实现存内计算技术在AI芯片上的广泛应用还必须进一步着眼于发展包括算法框架、编译器、仿真器、电路设计与器件模型在内的整套技术体系。
模块化降低芯片设计门槛
◎清华大学长聘教授尹首一:
当前集成电路技术和产业正处在关键变革窗口期:一方面,摩尔定律经过五十余年高速发展后不可避免地遭遇物理极限,制造工艺迭代愈发缓慢;另一方面,云计算、物联网和人工智能催生出大量碎片化、定制化应用需求。传统集成电路设计产业模式以追求“量大面广”为目标,未来“小步试错、快速迭代”将成为重要趋势。
开源IP核、Chisel语言以及芯粒(Chiplet)技术在不同层次上成为实现芯片敏捷开发的使能技术。开源IP核降低了芯片设计的进入门槛,Chisel语言提高了硬件抽象层次,而芯粒则为系统级芯片设计提供了崭新途径。尤其是未来随着异质集成、三维集成等技术的成熟,摩尔定律将在全新维度上得以延续。
编辑推荐:

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>