电话:0731-83595998
导航

江西法检考试行测答题技巧:排列组合妙招之插板法

来源: 2017-09-12 09:49

 一.定义

插板法就是在n个元素间的(n-1)个空中插入 若干个(b)个板,可以把n个元素分成(b+1)组的方法。

应用插板法必须满足三个条件:

(1) 这n个元素必须互不相异

(2) 所分成的每一组至少分得一个元素

(3) 分成的组别彼此相异

举个很普通的例子来说明:

把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?

问题的题干满足条件(1)(2),则适用插板法,C(9,2)=36。

二.应用

1.凑元素插板法 (满足条件(1),不满足条件(2)时可适用此方法)

例1 :把10个相同的小球放入3个不同的箱子,问有几种情况?

立正解析:3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况呢,利用插板法可得:C(12,2)=66。

例2:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?

立正解析:我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为 把9个相同小球放3不同箱子,每箱至少1个,几种方法? C(8,2)=28。

2.添板插板法

例3:把10个相同小球放入3个不同的箱子,问有几种情况?

立正解析:

-o - o - o - o - o - o - o - o - o - o -

(o表示10个小球,-表示空位)

11个空位中取2个加入2块板,第一组和第三组可以取到空的情况,第2组始终不能取空,此时 若在 第11个空位后加入第12块板,设取到该板时,第二组取球为空

则每一组都可能取球为空,利用插板法则c(12,2)=66。

立正教育专家相信考生们能够快速掌握此方法,并能快速运用到解决排列组合题当中,经过反复训练一定可以将这类题目的分数拿到手。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端