电话:0731-83595998
导航

2019国考招警行测考点:如何解决工程问题的不同题型

来源: 2018-01-24 22:04

工程问题作为数量关系中的一个重要考点,几乎在每次考试中都有出现,而且此类题型无论怎么变化,考察的核心都是:工作总量=工作时间×工作效率。所以从公式中可以看出,工程题可能会与方程的思想结合一起考察问题。

工程问题大多数解题都是利于赋值的思想。一般分为四种,除此之外,此类题型也可能会和经济利润问题结合在一起考察。

一、题干中只给出是时间的量

三个量只给时间,可以赋值工作总量为时间的公倍数,例如:某项工程,甲单独完成需要8天,乙需要4天。那么就可以赋值工作总量为4和8的公倍数,即8、16、24……(注:一般为了计算方便,赋值为最小公倍数即可)

二、题干直接或间接给出效率比

给出效率比直接赋值效率即可,例如知道甲乙的效率比为3:4,即可直接赋值甲的效率为3,乙的效率为4;又如:某检修工作由李和王二人负责,两人如一同工作4天,剩下的工作量李需要6天,或王需要3天完成,由此可知两人效率比李:王=1:2,直接赋值李的效率为1,王的效率为2即可。

三、题干中既有时间也有效率

考虑列方程,工作总量=工作时间×工作效率,找等量关系。

【例1】某商铺甲乙两组员工利用包装礼品的边角料制作一批花朵装饰门店。甲组单独制作需要10小时,乙组单独制作需要15小时,现两组一起做,期间乙组休息了1小时40分,完成时甲组比乙组多做300朵。问这批花有多少朵?( )

A.600     B.900

C.1350   D.1500

【中公解析】题干中可以知道甲乙的效率比比为3:2,又知道甲比乙多做了300多。即可据此列方程,设甲乙的效率分别为3x和2x,即工作总量为30x,甲先单独做3x×5/3=5x.剩余30x-5x=25x甲乙合作,需要25x÷(3x+2x)=5小时。所以乙一共做了10x,甲做了20x,多做10x=300多。所以一共30x=900朵,选择B选项。

四、多人合作可考虑赋值效率为1

【例2】某件刺绣产品,需要效率相当的三名绣工8天才能完成;绣品完成50%时,一人有事提前离开,绣品由剩下的两人继续完成;绣品完成75%时,又有一人离开,绣品由最后剩下的那个人做完。那么,完成该件绣品一共用了( )。

A.10天    B.11天

C.12天    D.13天

【中公解析】工程问题,赋值法。设每个绣工每天效率为1,则工作总量为3×1×8=24。第一次时间:天;第二次时间:天;第三次时间:天。则总时间为4+3+6=13天。选择D项。

相信通过上面你的讲解,大家对工程问题会有一个全新的认识,除了我们常用的提醒和方法之外,能够更好的应对工程问题中不同的题型,更好的解决工程问题。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端