行测备考:浅谈抽屉问题 均、等的思想求结果1
给定若干苹果数和若干抽屉数,给定某种放置苹果的要求,问至少有多少苹果在同一抽屉。出现这种“至少有多少苹果在同一抽屉”的问法,属于抽屉问题中求结果的问题。
【例题】
50名同学参加聚会,问,参与聚会的同学中,至少有多少人是同一属相?
【2.思想:均、等的思想。用抽屉原理当中的2种简单的情况去体会这个核心思想。
2个苹果放到3个抽屉里,“至少有一个抽屉是空的”是怎么得出来的?把2个苹果平均放到2个抽屉中,那肯定会有一个抽屉是空的。
3个苹果放到2个抽屉里,“至少有一个抽屉里苹果数 2”是怎么得出来的?先把2个苹果平均放到2个抽屉中,此时还多出一个苹果,但又必需放到抽屉里去,那肯定会出现有一个抽屉里的苹果数是2。
3.方法:在均、等思想的指导之下,求结果的题型都用上面的公式进行求解,苹果数除以抽屉数得到的整数部分再加1即为结果。很多题目不会明确给出苹果数和抽屉数,需要我们根据题目条件分辨出具体的苹果数和抽屉数,之后将对应数据代入公式中即可。
4.关键:找到具体题目中的苹果数和抽屉数。
很多题目不是典型的抽屉问题,需要自行构造抽屉后将之等价转化为抽屉问题。抽屉的构造方法就是以题干条件进行分组,分出来的组数就是抽屉数。
解析】
求解抽屉问题中的结果数,核心在与均、等思想,注意以下几点:
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>