电话:0731-83595998
导航

行测工程 问题解答找特殊数字

来源: 2018-11-08 18:03

 工程问题是常见的题型,这类题型的考察相对固定,对于题型中的问题掌握相对比较容易,所以中公教育专家就跟大家介绍一下关于特值法在工程问题当中的应用。

一、常见的比例统一的类型

1.设总量为特值。

在题目当中若总量一定,已知时间或者效率都可以设总量为特值。

例如:一个项目,甲完成需要8天,乙完成需要10天,甲乙合作需要多少天?

类似于这样的题目当中,需要对总量做出假设,这时可以设8与10的公倍数,设为40,这时可以得到甲的效率为5,乙的效率为4,由此可以利用总量除以效率求出时间,即:

2.设效率或时间为特值当中的特值。

在题目当中若存在时间比例关系或效率比例关系,也可以根据比例关系的情况设特值,也可以根据根据题目描述设时间或效率为特值。

例如:一项工作若甲乙合作需要10天完成,已知甲:乙的效率比为1:2,那么这项工程让甲完成需要多久?

面对这种题目时,可以假设甲和乙的效率分别为1和2,由此我们得到这项工作的工作总量为30,利用总量除以效率的方式求得,甲完成这项工作需要30天。

二、比例统一常见的应用

例1:一项工程甲完成需要30天,甲、乙合作需要18天,乙、丙合作需要15天,甲乙丙共同完成需要几天?

A.8 B.9 C.10 D.11

 解析:可设总量为180,则甲的效率为6,甲与乙的效率和是10,所以乙的效率为4,乙和丙合作是15天,乙和丙的效率和是12,乙的效率是4,则丙的效率是8,甲乙丙三个的效率是18,又已知总量为180,所以三人合作完成需要10天。答案选C。

 

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端