长理职培•广西
国电

2020广西中烟工业公司考试行测七招教你速解排列组合

来源: 2019-11-22 23:07

1.间接法


  即部分符合条件排除法,采用正难则反,等价转换的策略。为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数。


  例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?


  A.240 B.310 C.720 D.1080


  正确答案【B】


  解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。


  2.科学分类法


  问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。


  对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。同时明确分类后的各种情况符合加法原理,要做相加运算。


  例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有( )种。


  A.84 B.98 C.112 D.140


  正确答案【D】


  解析:按要求:甲、乙不能同时参加分成以下几类:


  a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;


  b.乙参加,甲不参加,同(a)有56种;


  c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。


  故共有56+56+28=140种。


  3.特殊优先法


  特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。


  例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )


  (A) 280种 (B)240种 (C)180种 (D)96种


  正确答案:【B】


  解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有 C(4,1)×A(5,3)=240种,所以选B。


  4.捆绑法


  所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。注意:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。


  例:5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?


  A.240 B.4320 C.450 D.480


  正确答案【B】


  解析:采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有 A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6) ×A(3,3) = 4320(种)。


  5.选“一”法,类似除法


  对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。 这里的“选一”是说:和所求“相似”的排列方法有很多,我们只取其中的一种。


  例:五人排队甲在乙前面的排法有几种?


  A.60 B.120 C.150 D.180


  正确答案【A】


  解析:五个人的安排方式有5!=120种,其中包括甲在乙前面和甲在乙后面两种情形(这里没有提到甲乙相邻不相邻,可以不去考虑),题目要求之前甲在乙前面一种情况,所以答案是A(5,5)÷A(2,2)=60种。


  6.插空法


  所谓插空法,指在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置。


  注意:a.首要特点是不邻,其次是插空法一般应用在排序问题中。


  b.将要求不相邻元素插入排好元素时,要注释是否能够插入两端位置。


  c.对于捆绑法和插空法的区别,可简单记为“相邻问题捆绑法,不邻问题插空法”。


  例:若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?


  A.9 B.12 C.15 D.20


  正确答案【B】


  解析:先排好丙、丁、戊三个人,然后将甲、乙插到丙、丁、戊所形成的两个空中,因为甲、乙不站两端,所以只有两个空可选,方法总数为A(3,3)×A(2,2)=12种。


  7.插板法


  所谓插板法,指在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少1的板插入元素之间形成分组的解题策略。


  注意:其首要特点是元素相同,其次是每组至少含有一个元素,一般用于组合问题中。


  例:将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?


  A.21 B.24 C.28 D.45


  正确答案【A】


  解析:解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。因此问题只需要把8个球分成三组即可,于是可以将8个球排成一排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是C(7,2)=21。(注:板也是无区别的)

温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)

直播课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
相关推荐
热门排行
长理职培微信公众号 资讯,试题,视频一手掌握
微信搜索并关注公众号:CLZP66
回顶部
'); })();