2019年南方电网校园招聘笔试资料例题精讲(102)
基本原理(线段与端点的关系):
含两端端点:1条线段有2个端点,2条线段有3个端点,3条线段有4个端点,……,n条线段有n+1个端点。线段数比端点数少1。不含两端端点:1条线段有0个端点,2条线段有1个端点,3条线段有2个端点,……,n条线段有n-1个端点。线段数比端点数多1。
在不封闭的植树模型中,树木相当于端点,两棵树之间的线相当于线段,树木棵数为端点数,树木之间的间距数为线段数,所以公式为:
含两端一侧植树:棵数=路长÷树距+1
含两端两侧植树:棵数=(路长÷树距+1)×2
不含两端一侧植树:棵数=路长÷树距-1
不含两端两侧植树:棵数=(路长÷树距-1)×2
而对于一个不封闭植树模型的变型考法的题目,要把题目快速解决掉,关键要弄清楚题干中线段是什么含义、端点是什么含义、含两端端点还是不含两端端点。比如爬楼梯问题,楼层相当于端点,连接楼层之间的楼梯相当于线段,是含两端端点的模型,如从1楼到10楼,端点数为10,线段数为9。
例1:在100米长的公路两侧植树,每5米植一棵,两端也要植树,一共可以植多少棵树?
A.20 B.21 C.40 D.42
【答案】D。解析:题目属于不封闭的植树模型,两侧植树,两端也要植树,所以属于“含两端两侧植树”,棵数=(100÷5+1)×2=42。
例2:有三条路组成“Z”字型,三条路分别长120米、150米、160米,现在需要在路的两侧等距离植树,要求端点和路的连接处都要植树,问至少需要植多少棵数?
A.44 B.88 C.43 D.86
【答案】B。解析:题目属于不封闭的植树模型,两侧植树,两端也要植树,所以属于“含两端两侧植树”。由于端点和路的连接处都要植树,对于第一条路来说,树距是120的约数,对于第二条路来说,树距是150的约数,对于第三条路来说,树距是160的约数;所以树距应该为120、150、160的公约数;而要求树木少,则树距应该为120、150、160的最大公约数10。则棵数=【(120+150+160)÷5+1】×2=88。
例3:有一根180米长的绳子,从一端开始每隔3米作一记号,每隔4米作一记号,然后将标有记号的地方剪断,绳子共被剪成多少段?
A.89 B.90 C.104 D.105
【答案】B。解析:题目属于不封闭的植树模型的变型考法,记号为端点,剪成的段为线段,只有一侧,两端不做记号,所以属于“不含两端一侧植树”。3米的记号有:180÷3-1=59个;4米的记号有:180÷4-1=44个;重复的记号(12米重复一个)有:180÷12-1=14个;所以记号一共有59+44-14=89个。线段有89+1=90段。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>