电话:0731-83595998
导航

2019年南方电网人才招聘考试面试资料(111)

来源: 2018-08-11 09:24

 元素相同,直接除法。

针对题目中并未出现元素不同,也就是元素有可能相同的情况。我们可在类型一的基础上,更深入的进行类型二,下面我们来研究下面一道真题。

例2:某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名?

A.10 B.11 C.12 D.13

解析:仔细阅读题目,我们发现这道题中并未出现元素不相同的字眼,那么根据极限思想中等均接近的原则,可直接做除法。即能等则等,让所有部门尽可能平均分,65÷7=9余2,即平均分配给7个不同部门还剩余2名毕业生,已知行政部门毕业生最多,所以只需将剩余的2名毕业生分配给行政部门即可(如果只分配1名,那么其他部门也会出现不少于10人的情况),可得9+2=11名。正确答案为B。

此类题型相当于和定最值定位一的一个小突破,是在把握和定最值核心思想的基础上,直接利用最简便的方式求解,关键是题目本身未设定元素相异,这样一来定位二即可淋漓尽致的发挥。

第三类:类型未知,先入为主

题目中如果连几种元素都未知,也就是类型都没给你,那就需先打好基础。从元素类型的求解入手,再借助前两种定位即可一举破题。

例题3:某工厂有100名工人报名参加了4项专业技能课程中的一项或多项,已知A课程与B课程不能同时报名。如果按照报名参加的课程对工人进行分组,将报名参加的课程完全一样的工人分到同一组中,则人数最多的组最少有多少人?

A.7 B.8 C.9 D.10

解析:假设有ABCD四个课程,当只报名一种课程时,有4种类型;当报名两种课程时,除去同时报名A、B课程时的情况,有5种类型;当报名三种课程时,共有ACD和BCD这2种情况;故共有类型数4+5+2=11种。求出了课程报名的总类型数,发现题目中并未要求元素相异,则根据类型二中能等则等的直除法,直接利用定位二进行除法运算,100/11=9余数为1。剩下的1个人只能给人数最多的那个组,故人数最多的组最少为10人。正确答案为D。

这种类型难度系数偏高,既用到了部分排列组合知识求解类型,又结合了类型二进行研究,一般考生掌握起来难度偏大。这种类型的题型特征,往往是没告诉元素类型或者元素分组,这就需要考生先行求出,再利用类型一二中给出方法的进行求解。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端