电话:0731-83595998
导航

2021年南方电网招聘笔试资料:一元二次函数求极值

来源: 2020-09-04 08:57

求解方法

(一)公式法:

当x=-b/2a时,y取到最值,将x代入函数式求得具体的最值。

例1:某商店出售A商品,若每天卖30件,则每件可获利6元。根据经验,若A商品每件涨1元钱,每天就少卖1件。为使每天获利最大化,A商品应涨价:

A.16元 B.14元 C.12元 D.10元

答案:C

 

(二)因式分解法:将一元二次多项式分解成两个因式相乘的形式,且这两个因式的加和是定值,则令这两个因式相等,求得的x值即为取得极值下的x值。

例2:某商场出售同样一种商品,若每天卖100件,则每件可获利40元。根据经验,若该商品单价每涨3元钱,每天就少卖3件。为使每天获利最大化,A商品应涨价:

A.16元 B.14元 C.12元 D.10元

答案:D

解析:根据题意,每天获得总利润=每件利润×件数,可设每件涨价x个3元,即涨价3x元,因成本不变,则每件的利润涨了3x元,每件利润为(40+3x)元;因每件涨价x个3元,那么每天少卖3x件,每天件数为(100-3x)件,故每天获得总利润y=(40+3x)(100-3x),因(40+3x)与(100-3x)两个因式的和是定值140,则当40+3x=100-3x,x=10时取得最大值。

例3:将进货单价为90元的某商品按100元一个出售时,能卖出500个,已知这种商品如果每个涨价1元,其销售量就会减少10个,为了获得最大利润,售价应定为:

A.110元 B.120元 C.130元 D.150元

答案:B

解析:根据题意可设涨价x元,则售价为(100+x)元,销量为(500-10x)元,则获得的总利润y=(100+x-90)(500-10x)=(10+x)(500-10x),为了使乘积中的两个因式的和变为定值,可将(500-10x)中提出10,即y=(10+x)[10(50-x)]此时(10+x)与(50-x)的和为60,当10+x=50-x,即x=20时,取得最大利润,此时售价为100+x=120元。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端