湖南公务员考试行测备考之数字推理六大基本数列全解析
数量关系的理解能力有多种表现形式,因而对其测量的方法也是多种多样的。在行政职业能力测验中主要从数字推理和数学运算两个角度来测查应试者的数量关系理解能力和反应速度。
在近些年公务员考试中,出现形式主要体现在等差数列、等比数列、和数列、积数列、平方数列、立方数列这六大数列形式中,在此,中公教育老师针对上述六大数字推理的基本形式,根据具体的例题一一为考生做详细解析。
第一:等差数列
等比数列分为基本等差数列,二级等差数列,二级等差数列及其变式。
1.基本等差数列例题:12,17,22,,27,32,( )
2.二级等差数列:后一项减前一项所得的新的数列是一个等差数列。
例题: -2,1,7,16,( ),43
3.二级等差数列及其变式:后一项减前一项所得的新的数列是一个基本数列,这个数列可能是自然数列、等比数列、平方数列、立方数列有关。
例题:15. 11 22 33 45 ( ) 71
『解析』 二级等差数列变式。后一项减前一项得到11,11,12,12,14,所以答案为45+12=57。
第二:等比数列分为基本等比数列,二级等比数列,二级等比数列及其变式。
1.基本等比数列:后一项与前一项的比为固定的值叫做等比数列。
例题:3,9,( ),81,243
2.二级等比数列:后一项与前一项的比所得的新的数列是一个等比数列。
例题:1,2,8,( ),1024
3.二级等比数列及其变式
例题:6 15 35 77 ( )
『解析』典型的等比数列变式。6×2+3=15,15×2+5=35,35×2+7=77,接下来应为64×2+9=163。
第三:和数列
和数列分为典型和数列,典型和数列变式。
1.典型和数列:前两项的加和得到第三项。
例题:1,1,2,3,5,8,( )
解析:最典型的和数列,括号内应填13。
2.典型和数列变式:前两项的加和经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者每两项加和与项数之间具有某种关系。
例题:3,8,10,17,( )
解析:3+8-1=10(第3项),8+10-1=17(第4项),10+17-1=26(第5项),
第四:积数列
积数列分为典型积数列,积数列变式两大部分。
1.典型积数列:前两项相乘得到第三项。
例题:1,2,2,4,( ),32
所以,答案为8
2.积数列变式:前两项的相乘经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者每两项相乘与项数之间具有某种关系。
例题:2,5,11,56,( )
解析:2×5+1=11(第3项),5×11+1=56(第4项),11×56+1=617(第5项),
第五:平方数列
平方数列分为典型平方数列,平方数列变式两大部分。
1.典型平方数列:典型平方数列重要的变化就是递增或递减的平方。
例题:196,169,144,( ),100
2.平方数列的变式:这一数列特点不是简单的平方或立方数列,而是在此基础上进行"加减常数"的变化。
例题:0,3,8,15,( )
第六:立方数列
立方数列分为典型立方数列,立方数列的变式。
1.典型立方数列:典型立方数列重要的变化就是递增或递减的立方。
例题:125,64,27,( ),1
2.立方数列的变式:这一数列特点不是立方数列进行简单变化,而是在此基础上进行"加减常数"的变化。
例题:11,33,73,( ),231
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>