电话:0731-83595998
导航

Weiss的java数据结构与问题解决

来源: 2017-12-13 14:04

  import java.util.Random;

  public final class MaxSumTest

  {

  static private int seqStart = 0;

  static private int seqEnd = -1;

  /**

  * Cubic maximum contiguous subsequence sum algorithm.

  * seqStart and seqEnd represent the actual best sequence.

  */

  public static int maxSubSum1( int [ ] a )

  {

  int maxSum = 0;

  for( int I = 0; I < a.length; i++ )

  for( int j = I; j < a.length; j++ )

  {

  int thisSum = 0;

  for( int k = I; k maxSum )

  {

  maxSum   = thisSum;

  seqStart = I;

  seqEnd   = j;

  }

  }

  return maxSum;

  }

  /**

  * Quadratic maximum contiguous subsequence sum algorithm.

  * seqStart and seqEnd represent the actual best sequence.

  */

  public static int maxSubSum2( int [ ] a )

  {

  int maxSum = 0;

  for( int I = 0; I < a.length; i++ )

  {

  int thisSum = 0;

  for( int j = I; j < a.length; j++ )

  {

  thisSum += a[ j ];

  if( thisSum > maxSum )

  {

  maxSum = thisSum;

  seqStart = I;

  seqEnd   = j;

  }

  }

  }

  return maxSum;

  }

  /**

  * Linear-time maximum contiguous subsequence sum algorithm.

  * seqStart and seqEnd represent the actual best sequence.

  */

  public static int maxSubSum3( int [ ] a )

  {

  int maxSum = 0;

  int thisSum = 0;

  for( int I = 0, j = 0; j < a.length; j++ )

  {

  thisSum += a[ j ];

  if( thisSum > maxSum )

  {

  maxSum = thisSum;

  seqStart = I;

  seqEnd   = j;

  }

  else if( thisSum < 0 )

  {

  I = j + 1;

  thisSum = 0;

  }

  }

  return maxSum;

  }

  /**

  * Recursive maximum contiguous subsequence sum algorithm.

  * Finds maximum sum in subarray spanning a[left..right].

  * Does not attempt to maintain actual best sequence.

  */

  private static int maxSumRec( int [ ] a, int left, int right )

  {

  int maxLeftBorderSum = 0, maxRightBorderSum = 0;

  int leftBorderSum = 0, rightBorderSum = 0;

  int center = ( left + right ) / 2;

  if( left == right )  // Base case

  return a[ left ] > 0 ? A[ left ] : 0;

  int maxLeftSum  = maxSumRec( a, left, center );

  int maxRightSum = maxSumRec( a, center + 1, right );

  for( int I = center; I >= left; i– )

  {

  leftBorderSum += a[ I ];

  if( leftBorderSum > maxLeftBorderSum )

  maxLeftBorderSum = leftBorderSum;

  }

  for( int I = center + 1; I maxRightBorderSum )

  maxRightBorderSum = rightBorderSum;

  }

  return max3( maxLeftSum, maxRightSum,

  maxLeftBorderSum + maxRightBorderSum );

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端