人工神经网络应用于继电保护的探讨
人工神经网络(AartificialNeuralNetwork,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家WarrenS.Mcculloch和数学家WalthH.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,BackPropagation),它的网络结构及算法直观、简单,在工业领域中应用较多。
因此,对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统中的应用具有很大的潜力,目前已涉及到如暂态,动稳分析,负荷预报,机组最优组合,警报处理与故障诊断,配电网线损计算,发电规划,经济运行及电力系统控制等方面[5]。
1、人工神经网络理论概述
在神经网络投运前,就应用大量的数据,包括正常运行的、不正常运行的,作为其训练内容,以一定的输入和期望的输出通过BP算法去不断修改网络的权值。在投运后,还可根据现场的特定情况进行现场学习,以扩充ANN内存知识量。从算法原理看,并行处理能力和非线性功能是BP算法的一大优点。
神经网络理论的保护装置,可判别更复杂的模式,其因果关系是更复杂的、非线性的、模糊的、动态的和非平稳随机的。它是神经网络(ANN)与专家系统(ES)融为一体的神经网络专家系统,其中,ANN是数值的、联想的、自组织的、仿生的方式,ES是认知的和启发式的。
ANN保护装置出厂后,还可以在投运单位如网调、省调实验室内进行学习,学习内容针对该省的保护的特别要求进行(如反措)。到现场,还可根据该站的干扰情况进行反误动、反拒动学习,特别是一些常出现波形间断的变电站内的高频保护。
本文基于现代控制技术提出了人工神经网络理论的保护构想。神经网络软件的反应速度比纯数字计算软件快几十倍以上,这样,在相同的动作时间下,可以大大提高保护运算次数,以实现在时间上即次数上提高冗余度。
神经网络的硬件芯片现在仍很昂贵,但技术成熟时,应利用硬件实现现在的软件功能。另外,神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据。所有这些都有待于对神经网络基本理论进行深入的研究,以形成完善的理论体系,创造出更适合于实际应用的新型网络及学习算法。
相关推荐:因特网和内联网技术在供电企业的应用
沙角C电厂事故顺序记录的通道组态分析及整改
12编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>