变压器固体绝缘故障的诊断方法
引言
当变压器内部故障涉及固体绝缘时,无论故障的性质如何,通常认为是相当严重的。因为一旦固体材料的绝缘性能受到破坏,很可能进一步发展成主绝缘或纵绝缘的击穿事故。所以纤维材料劣化引起的影响在故障诊断中格外受到重视。而且,如能确定变压器发生异常或故障时是否涉及固体绝缘,也就初步确定了故障的部位,对设备检修工作很有帮助。
1、判断固体绝缘故障的常规方法
月岗淑郎[1]研究了使用变压器单位纸重分解并溶于油中的碳的氧化物总量,即(CO+CO2)mL/g(纸)来诊断固体绝缘故障。但是,已投运的变压器的绝缘结构、选用材料和油纸比例随电压等级、容量、型号及生产工艺的不同而差别很大,不可能逐一计算每台变压器中绝缘纸的合计质量,该方法因实际操作困难,难以应用;并且,考虑全部纸重在分析整体老化时是比较合理的,如故障点仅涉及固体绝缘很小的一部分时,使用这种方法也很难比单独考虑CO、CO2含量更有效。
2、固体绝缘故障的动态分析方法
电力变压器内部涉及固体绝缘的故障包括:围屏放电、匝间短路、过负荷或冷却不良引起的绕组过热、绝缘浸渍不良等引起的局部放电等。无论是电性故障或过热故障,当故障点涉及固体绝缘时,在故障点释放能量的作用下,油纸绝缘将发生裂解,释放出CO和CO2.但它们的产生不是孤立的,必然因绝缘油的分解产生各种低分子烃和氢气,并能通过分析各特征气体与CO和CO2间的伴生增长情况,来判断故障原因。
本文采用Pearson积矩相关来衡量变量间的关联程度,被测变量序列对(xi,yi),i=1,…,相关系数γ的显著性选择两种检验水平:以α=1%作为变量是否显著相关的标准,而以α=5%作为变量间是否具有相关性的标准。即:当相关系数γ>γ0.01时,认为变量间是显著相关的;γ<γ0.05时,二者没有明确的关联。γ0.01、γ0.05的取值与抽样个数N有关,可通过查相关系数检验表获得。
这种方法在一定程度上可以反映故障的严重程度,在过热性故障的情况下,如果CO不仅与CH4有较强的相关性,还与C2H4相关,表明故障点的温度较高;而在发生放电性故障时,如果CO与H2和C2H2都有较强的相关性,说明故障的性质可能是火花放电或电弧放电。
确认故障类型后,如能进一步了解故障的发展趋势,将有助于维修计划的合理安排。而产气速率作为判断充油设备中产气性故障危害程度的重要参数,对分析故障性质和发展程度(包括故障源的功率、温度和面积等)都很有价值[4]。
(a)正二次型:总烃随时间的变化规律大致为Ci=a.t2+b.t+c(a>0),即产气速率γ=a.t+b不断增大,与时间成正比。这常与突发性故障相对应,故障功率及所涉及的面积不断变大,这种故障增长模式往往非常危险。
(c)一次型:即线性增长模型,是一种与稳定存在的故障点相对应的产气形式。总烃的变化规律为Ci=k.t+j,产气速率为固定的常数k,通常只有当故障产气率k或总烃Ci大于注意值时才认为故障严重。
4、实例分析
1985年3月14日进行吊芯检查发现,高压线圈与低压线圈间围屏有7层存在不同程度的烧伤、穿孔、爬电等明显的树枝状放电痕迹,属围屏放电故障,与分析结果相符。
a.电力变压器油中溶解气体的产生总有其内在的原因,根据故障的主要特征气体与CO的伴生增长情况,即可判断故障点是否涉及固体绝缘。这种方法基本上不受累积效应的影响,不存在注意值的限制,可以随时分析溶解气体的变化规律,及时发现可能存在的潜伏性故障。
相关推荐:浅谈一般变压器的结构
更多推荐:点击进入注册电气工程师考试报名频道,抢先知道最新报名信息!
点击进入2009年全国注册电气工程师考试合格标准
12编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>