浅析岩石可钻性分级研究进展
1石可钻性及可钻性分级研究概况
2现有的岩石可钻性分级方法
2.1传统法
压入硬度法是利用压入硬度计测出岩石的压入硬度值作为岩石的可钻性指标。压入硬度法是测定岩石的某点或有限点抵抗外力入侵的能力,而岩石是由大大小小不规则的矿物颗粒组成的。矿物颗粒在空间的排列是任意的,颗粒间存在很多空洞和缝隙,岩石结构上的这种特殊性决定了岩石各点的压入硬度值有很大的差异,整块岩石的可钻性不应该也不可能由某点或某几点的压入硬度值来确定。
点载法是由点载仪测得的,用点载强度系数作为衡量岩石的可钻性指标。点载强度系数由岩石样品在三向应力状态下产生破坏时的点载决定。点载法不能从可钻性上把岩石分开。这是因为岩石在三向应力状态下,产生张性破坏,而各种岩石都存在许多缝隙,岩石破坏是由于在缝隙处产生应力集中。这样点载法的测定结果实际上是岩石裂隙发育程度的反映。
微钻头钻进法是在室内运用可钻性测定仪确定岩石的可钻性,利用穿孔速度和牙轮磨损情况,压痕试验中确定的压痕器指数,以及抗压强度试验结果,对岩石的可钻性进行综合评定。这是一种很直观的方法,利用取自于地层的岩心测试能够真实的反映地层的可钻性范围,为钻头的选型及地质分层提供了强有力的参数,也是检验其它计算地层可钻性级值准确性的依据。
2.1.4摇摆法 考试大-中国教育考试门户网站
为振幅随时间衰减的速率。
2.2统计法
实践证明,采用通用钻速方程反求岩石可钻性的方法比室内岩心实验求岩石可钻性的方法更为科学和便利,可节省大量的人力、物力和财力。用钻速方程反求法可以精确测量岩石的可钻性,可应用于现场计算。通过测井资料对岩石可钻性进行计算,将计算结果与微可钻性试验结果比较,两者的相对误差较小,小于5%,说明利用钻速方程可以较为精确地测量岩石的可钻性,是作为实时监测岩石可钻性的有效方法,另外通过对钻井参数的数据收集,通过计算机的程序处理就可以实时显现岩石的可钻性级值。但是在求取可钻性的时候需要大量的录井数据(如钻压、转速、钻井液密度和机械钻速等)和详实的井史资料,它同测量仪器仪表和钻井过程中的施工参数密切相关,所求取的可钻性级值不能完全代表地下岩石的真实情况。
分形几何学是一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,它的主要内容是研究一些具有自相似性的不规则曲线和形状;具有自反演性的不规则图形;具有自平方性的分形变换以及具有自仿射的分形集等等。分形的基本特征是自相似性,而且自然界中的自相似性或标度不变性常常是统计意义上的。由于没有特征尺度,分形体不能用一般测度进行度量,描述分形的特征参数叫做分形维数,也因其可以是分数而称其为分数维,简称分维。在实际应用中,这种自相似可以是数学上的严格自相似,但更多的是考虑研究对象的自相似性。更一般地,我经常把几何上并不明显的自相似性转变成统计意义上的自相似性,也就是虑研究对象的某些指标的局部概率分布与整体概率分布之间的相似关系。分形几何理论在上世纪70年代建立后,迅速在物理学、地理学、冶金学、材料科学和计算机图形学等领域得到应用。80年代,分形几何学在岩石力学方面得到了广泛应用,例如,在结构性岩体爆破破碎分形、矿山岩体断裂构造分形、岩石分形强度理论、岩石断裂、岩石损伤分形等研究方面,近几年国内外都取得了大量研究成果。尽管目前还没有人用分形理论研究钻井过程中的岩石破碎问题,但毫无疑问钻头破碎岩石的过程是自相似过程,可以用分形理论来描述钻井上返岩屑的分形规律,进而由此确定岩石破碎的难易程度。
随着研究进程的深入,人们希望用实验室测量手段,也就是用物理力学性质来表示岩石可钻性。开始用单项力学性能指标来评定岩石可钻性,由于测量结果不准确,后改用多种物理力学性质来综合评定岩石可钻性,效果也不好。又改用多项物理力学性能指标与现场数据相结合的方法来评定岩石可钻性,结果仍无明显进展。现在又有人用多项力学指标、现场数据、室内模拟试验结果以及数理统计来综合评定岩石可钻性。虽然测量方法越来越复杂,但一直没有研究出精确反映岩石可钻性的测量方法。
通过以上的论述已经可以看出,常用的可钻性级值的求取各有特点,无法直接认为哪种方法最优。以上方法得到是可钻性级值的一个剖面,在实际使用中是不可能、也没有必要逐一地去分析每一点的可钻性级值,然后选取和设计出适合每一点的钻头类型。因此,建立不同岩性、不同地区的岩屑与岩心力学参数之间的相关关系模型,使之发展成为一套完整获取岩石可钻性级值等相关参数的实验体系。然后建立标准程序及配套应用方案,对不同方法得到的可钻性级值进行分层处理之后,再对该层内的可钻性级值进行加权平均,得到新的可钻性级值,从而为下一步钻头选型提供比较准确的参考依据。
2现有的岩石可钻性分级方法
2.1传统法
压入硬度法是利用压入硬度计测出岩石的压入硬度值作为岩石的可钻性指标。压入硬度法是测定岩石的某点或有限点抵抗外力入侵的能力,而岩石是由大大小小不规则的矿物颗粒组成的。矿物颗粒在空间的排列是任意的,颗粒间存在很多空洞和缝隙,岩石结构上的这种特殊性决定了岩石各点的压入硬度值有很大的差异,整块岩石的可钻性不应该也不可能由某点或某几点的压入硬度值来确定。
点载法是由点载仪测得的,用点载强度系数作为衡量岩石的可钻性指标。点载强度系数由岩石样品在三向应力状态下产生破坏时的点载决定。点载法不能从可钻性上把岩石分开。这是因为岩石在三向应力状态下,产生张性破坏,而各种岩石都存在许多缝隙,岩石破坏是由于在缝隙处产生应力集中。这样点载法的测定结果实际上是岩石裂隙发育程度的反映。
微钻头钻进法是在室内运用可钻性测定仪确定岩石的可钻性,利用穿孔速度和牙轮磨损情况,压痕试验中确定的压痕器指数,以及抗压强度试验结果,对岩石的可钻性进行综合评定。这是一种很直观的方法,利用取自于地层的岩心测试能够真实的反映地层的可钻性范围,为钻头的选型及地质分层提供了强有力的参数,也是检验其它计算地层可钻性级值准确性的依据。
2.1.4摇摆法 考试大-中国教育考试门户网站
为振幅随时间衰减的速率。
2.2统计法
实践证明,采用通用钻速方程反求岩石可钻性的方法比室内岩心实验求岩石可钻性的方法更为科学和便利,可节省大量的人力、物力和财力。用钻速方程反求法可以精确测量岩石的可钻性,可应用于现场计算。通过测井资料对岩石可钻性进行计算,将计算结果与微可钻性试验结果比较,两者的相对误差较小,小于5%,说明利用钻速方程可以较为精确地测量岩石的可钻性,是作为实时监测岩石可钻性的有效方法,另外通过对钻井参数的数据收集,通过计算机的程序处理就可以实时显现岩石的可钻性级值。但是在求取可钻性的时候需要大量的录井数据(如钻压、转速、钻井液密度和机械钻速等)和详实的井史资料,它同测量仪器仪表和钻井过程中的施工参数密切相关,所求取的可钻性级值不能完全代表地下岩石的真实情况。
分形几何学是一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,它的主要内容是研究一些具有自相似性的不规则曲线和形状;具有自反演性的不规则图形;具有自平方性的分形变换以及具有自仿射的分形集等等。分形的基本特征是自相似性,而且自然界中的自相似性或标度不变性常常是统计意义上的。由于没有特征尺度,分形体不能用一般测度进行度量,描述分形的特征参数叫做分形维数,也因其可以是分数而称其为分数维,简称分维。在实际应用中,这种自相似可以是数学上的严格自相似,但更多的是考虑研究对象的自相似性。更一般地,我经常把几何上并不明显的自相似性转变成统计意义上的自相似性,也就是虑研究对象的某些指标的局部概率分布与整体概率分布之间的相似关系。分形几何理论在上世纪70年代建立后,迅速在物理学、地理学、冶金学、材料科学和计算机图形学等领域得到应用。80年代,分形几何学在岩石力学方面得到了广泛应用,例如,在结构性岩体爆破破碎分形、矿山岩体断裂构造分形、岩石分形强度理论、岩石断裂、岩石损伤分形等研究方面,近几年国内外都取得了大量研究成果。尽管目前还没有人用分形理论研究钻井过程中的岩石破碎问题,但毫无疑问钻头破碎岩石的过程是自相似过程,可以用分形理论来描述钻井上返岩屑的分形规律,进而由此确定岩石破碎的难易程度。
随着研究进程的深入,人们希望用实验室测量手段,也就是用物理力学性质来表示岩石可钻性。开始用单项力学性能指标来评定岩石可钻性,由于测量结果不准确,后改用多种物理力学性质来综合评定岩石可钻性,效果也不好。又改用多项物理力学性能指标与现场数据相结合的方法来评定岩石可钻性,结果仍无明显进展。现在又有人用多项力学指标、现场数据、室内模拟试验结果以及数理统计来综合评定岩石可钻性。虽然测量方法越来越复杂,但一直没有研究出精确反映岩石可钻性的测量方法。
通过以上的论述已经可以看出,常用的可钻性级值的求取各有特点,无法直接认为哪种方法最优。以上方法得到是可钻性级值的一个剖面,在实际使用中是不可能、也没有必要逐一地去分析每一点的可钻性级值,然后选取和设计出适合每一点的钻头类型。因此,建立不同岩性、不同地区的岩屑与岩心力学参数之间的相关关系模型,使之发展成为一套完整获取岩石可钻性级值等相关参数的实验体系。然后建立标准程序及配套应用方案,对不同方法得到的可钻性级值进行分层处理之后,再对该层内的可钻性级值进行加权平均,得到新的可钻性级值,从而为下一步钻头选型提供比较准确的参考依据。
相关推荐:2011年岩土工程师考试常用术语英语翻译及名词解释
编辑提醒:2011年岩土工程师考试时间为9月17-18日
来源:233网校-岩土工程师考试责编:zlr评论纠错
编辑推荐:
下载Word文档
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>