电话:0731-83595998
导航

2019年农商行招聘笔试技巧指导——数量关系排列组合问题的“杀手锏”

来源: 2019-06-22 15:33

 一、基本原理

排列组合是求方法数的,在这样一个过程中,就会设计到两个基本情况,也就是完成这样一项任务到底是分类还是分步,又或者都有。

第一加法原理:一步到位,分类用加法。例:A地到B地,高铁3趟,大巴4趟。那么从A到B就总共有7种方式

第二乘法原理:非一步到位,分步用乘法。例:总共有1、2、3、4、5。共5个数,组成一个三位数有多少种情况,这样我们会发现,组成三位数不是一次性的,需要分步开展,每个数位都有5种,共有5*5*5=125种。

二、排列组合

1、排列的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;所有的方法数叫做排列数,用符号 A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1

2、组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;所有的方法数叫做组合数。用符号 C(n,m) 表示。C(n,m)=A(n,m)∧2/m!=A(n,m)/m!; C(n,m)=C(n,n-m)。(其中n≥m)

这是给出了排列组合的两个基本定义,我们要从中把握住几个关键点,第一,在不同元素中挑选,才能用到排列组合,相同元素是不行的。第二,排列和组合一个是排成一列,一个是组成一组,这样就说明了一个是有序的而另一个是无序的,只有分清了什么是排列,什么是组合,才能能保证后面做题的正确率。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端