3.基本初等函数
(1)基本初等函数 我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数
由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数。
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。一般形式如下
(a>0, a≠1)性质:
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。即由导数知识得:作为实数变量x的函数, 的图像总是正的(在x轴之上)并递增(从左向右看)。它永不触及x轴,尽管它可以无限程度地靠近x轴(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数x上。有时,尤其是在科学中,术语指数函数更一般性的用于形如 (k属于R) 的指数函数函数,这里的 a 叫做“底数”,是不等于 1 的任何正实数。本文最初集中于带有底数为欧拉数e 的指数函数。指数函数的一般形式为 (a>0且≠1) (x∈R),从上面我们关于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得a>0且a≠1。如图所示为a的不同大小影响函数图形的情况。在函数中可以看到 :(1) 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。(2) 指数函数的值域为 。(3) 函数图形都是上凹的。(4) a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过指数函数程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。(7) 函数总是通过(0,1)这点,(若 ,则函数定过点(0,1+b))(8) 指数函数无界。(9)指数函数是非奇非偶函数(10)指数函数具有反函数,其反函数是对数函数,它是一个多值函数
点击加载更多评论>>