2020部队本科生提干分析推理-数字运算裂项求和法
这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
通项分解(裂项)如:
(1)1/[n(n+1)]=(1/n)-[1/(n+1)]
(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
(4)n·n!=(n+1)!-n!
(5)1/[n(n+k)]=1/k[/n-1/(n+k)]
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
编辑推荐:
下载Word文档
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>