电话:0731-83595998
导航

数学:常用推导公式

来源: 2020-04-08 13:17

  在推导的过程中有这几个常见的公式需要用到:

  1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

  2.y=u/v,y'=u'v-uv'/v^2

  3.y=f(x)的反函数是x=g(y),则有y'=1/x'

  证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

  2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。

  3.y=a^x,

  ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

  ⊿y/⊿x=a^x(a^⊿x-1)/⊿x

  如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。

  所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

  显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

  把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。

  可以知道,当a=e时有y=e^x y'=e^x。

  4.y=logax

  ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

  ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

  因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

  lim⊿x→0⊿y/⊿x=logae/x。

  可以知道,当a=e时有y=lnx y'=1/x。

  这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,

  所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。

  5.y=sinx

  ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

  ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

  所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx

  6.类似地,可以导出y=cosx y'=-sinx。

  7.y=tanx=sinx/cosx

  y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

  8.y=cotx=cosx/sinx

  y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

  9.y=arcsinx

  x=siny

  x'=cosy

  y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

  10.y=arccosx

  x=cosy

  x'=-siny

  y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

  11.y=arctanx

  x=tany

  x'=1/cos^2y

  y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

  12.y=arccotx

  x=coty

  x'=-1/sin^2y

  y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

  另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与

  4.y=u土v,y'=u'土v'

  5.y=uv,y=u'v+uv'

  均能较快捷地求得结果。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端