数学:重点把握核心命题线索
当高考数学的复习进入收尾阶段的时候,最重要的事情已经不再是多做多少新题,而是将已有的认识固化与升华,以求高考的正常甚至超常发挥。规律性的认识对高考的意义远远大于题海战术带来的低效率的复习,尤其是核心命题线索的把握,对整个高考数学的成败具有深远影响。
此时此刻,几乎所有考生大都已经过至少三轮的复习,所以对于各章节的基本知识点以及对应常见的题型和应对策略都有了比较系统的认识。我要强调的是:考生在知识完备的前提下,对整个高考数学尤其是重点章节命题线索及考查方式的把握将异常关键。
与高考其他学科相比较,数学学科的命题有两大鲜明特点:第一,高考数学试题考查异常全面,必修部分所学的章节几乎都会在试题中得到体现,未开垦的章节凤毛麟角。第二,高考数学试题对重点章节的考查又异常偏重偏难,从不回避。在重点章节知识网络交汇处命制的试题,其考查分值就可撑起整个高考数学满分的半壁江山。
其实,正是由于高考数学的不回避重点,所以从应试的角度来说,考生应重点了解几类最主要的命题线索,下面举出几个常见案例:
1.《函数》:函数概念导函数,函数性质,函数图象特殊结论
2.《数列》:数列概念递推关系数列通项数列求和
3.《解析几何》:曲线定义轨迹方程直线曲线综合韦达定理特殊结论
考生应通过对以往试题的认真复习,争取做到对诸如此类重点章节的重点命题线索心领神会,进而形成对数学试题的一种亲切感觉即一种踩题点的本领亦或一种条件反射,做到从试题条件的字里行间读出它的考点,从而快速找到突破口按图索骥使得问题迎刃而解。从某种程度上说,这正是特殊与一般数学思想的体现。
此外,鉴于这几则核心命题线索的重要性,考生也必须对它们所涉及的几则核心算理予以重视,例如联立直线方程与曲线方程,计算复合函数导数以及对导数值正负的讨论,数列通项求和与化简等等。因为对于命题线索掌握良好,临场形成正确思路应是水到渠成,所以千万要避免因为计算失误或马虎而失分。据此,我认为考生很有必要在考前就提升计算能力开展专项练习,从而达到对于常见的计算环境轻车熟路的效果。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>