电话:0731-83595998
导航

数学:数列专题复习习题及答案:一、选择题

来源: 2020-04-09 13:45

1.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1等于 (  ).

  A.13  B.-13

  C.19  D.-19

  解析 设等比数列{an}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,q2=9,又a5=a1q4=9,所以a1=19.

  答案 C

  2.在等差数列{an}中,若a2+a3=4,a4+a5=6,则a9+a10等于 (  ).

  A.9  B.10

  C.11  D.12

  解析 设等差数列{an}的公差为d,则有(a4+a5)-(a2+a3)=4d=2,所以d=12.又(a9+a10)-(a4+a5)=10d=5,所以a9+a10=(a4+a5)+5=11.

  答案 C

  3.在正项等比数列{an}中,3a1,12a3,2a2成等差数列,则a2013+a2014a2011+a2012等于 (  ).

  A.3或-1  B.9或1

  C.1  D.9

  解析 依题意,有3a1+2a2=a3,即3a1+2a1q=a1q2,解得q=3,q=-1(舍去),a2013+a2014a2011+a2012=a1q2012+a1q2013a1q2010+a1q2011=q2+q31+q=9.

  答案 D

  4.(2014•郑州模拟)在等比数列{an}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是 (  ).

  A.3  B.-3

  C.±3  D.±3

  解析 依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6=a4a8=3.

  答案 A

  5.(2014•济南模拟)在等差数列{an}中,a1=-2 014,其前n项和为Sn,若S1212-S1010=2,则S2 014的值等于 (  ).

  A.-2 011  B.-2 012

  C.-2 014  D.-2 013

  解析 根据等差数列的性质,得数列Snn也是等差数列,根据已知可得这个数列的首项S11=a1=-2 014,公差d=1,故S2 0142 014=-2 014+(2 014-1)×1=-1,所以S2 014=-2 014.

  答案 C

  6.(2013•辽宁卷)下面是关于公差d>0的等差数列{an}的四个命题:

  p1:数列{an}是递增数列;p2:数列{nan}是递增数列;

  p3:数列ann是递增数列;p4:数列{an+3nd}是递增数列.

  其中的真命题为 (  ).

  A.p1,p2  B.p3,p4

  C.p2,p3  D.p1,p4

  解析 设an=a1+(n-1)d=dn+a1-d,它是递增数列,所以p1为真命题;若an=3n-12,则满足已知,但nan=3n2-12n并非递增数列,所以p2为假命题;若an=n+1,则满足已知,但ann=1+1n是递减数列,所以p3为假命题;设an+3nd=4dn+a1-d,它是递增数列,所以p4为真命题.

  答案 D

  7.(2013•新课标全国Ⅰ卷)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于 (  ).

  A.3  B.4

  C.5  D.6

  解析 由Sm-1=-2,Sm=0,Sm+1=3,得am=2,am+1=3,所以d=1,

  因为Sm=0,故ma1+mm-12d=0,故a1=-m-12,

  因为am+am+1=5,

  故am+am+1=2a1+(2m-1)d=-(m-1)+2m-1=5,即m=5.

  答案 C

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端