数学:解三角形应用
解三角形
正弦定理
已知条件:一边和两角(如a、B、C,或a、A、B)
一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。
余弦定理
已知条件:两边和夹角(如a、b、C)
一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。
已知条件:三边(如a、b、c)
一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。
正弦定理(或余弦定理)
已知条件:两边和其中一边的对角(如a、b、A)
一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。(或利用余弦定理求出c边,再求出其余两角B、C)①若a>b,则A>B有唯一解;②若b>a,且b>a>bsinA有两解;③若a
编辑推荐:
下载Word文档
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>