数学:什么是曲线
按照经典的定义,从(a,b)到R3中的连续映射就是一条曲线,这相当于是说:
(1.)R3中的曲线是一个一维空间的连续像,因此是一维的 .
(2.)R3中的曲线可以通过直线做各种扭曲得到 .
(3.)说参数的某个值,就是说曲线上的一个点,但是反过来不一定,因为我们可以考虑自交的曲线。
微分几何就是利用微积分来研究几何的学科,为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。但是可微曲线也是不太好的,因为可能存在某些曲线,在某点切线的方向不是确定的,这就使得我们无法从切线开始入手,这就需要我们来研究导数处处不为零的这一类曲线,我们称它们为正则曲线。
正则曲线才是经典曲线论的主要研究对象。
曲线:任何一根连续的线条都称为曲线,包括直线、折线、线段、圆弧等。
曲线是1-2维的图形,参考《分数维空间》。
处处转折的曲线一般具有无穷大的长度和零的面积,这时,曲线本身就是一个大于1小于2维的空间。
1定义:含有未知数的等式叫方程。
等式的基本性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。则:
(1)a+c=b+c
(2)a-c=b-c
等式的基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。
编辑推荐:
下载Word文档
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>