数学:圆心角越大扇形就越大对不对
依据圆心角,弦,弧的关系,得到在同圆或等圆中,圆心角越大所对应的弧线越长,得到的扇形的面积越大,圆心角越小所对应的弧线越短,扇形的面积越小。在同圆中,圆心角越大,扇形的面积也越大。
推论:
在同圆或等圆中,如果(1)两个圆心角,(2)两条弧,(3)两条弦(4)两条弦上的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等
与圆周角关系
在同圆或等圆中,同弧或同弦所对的圆周角等于二分之一的圆心角。
定理证明:证明。
作直径CD,
∵OA = OB = OC
∴∠OBC = ∠OCB ∠OAC = ∠OCA
∴∠BOD = ∠OBC+∠OCB = 2∠BCD
即:∠BCD = 1/2∠BOD
同理:∠ACD = 1/2∠AOD
∴∠ACB = ∠BCD - ∠ACD
= 1/2(∠BOD - ∠AOD)
= 1/2∠AOB
计算公式
①L(弧长)=(r/180)XπXn(n为圆心角度数,以下同);
②S(扇形面积) = (n/360)Xπr2;
③扇形圆心角n=(180L)/(πr)(度)。
④K=2Rsin(n/2) K=弦长;n=弦所对的圆心角,以度计。
性质
①顶点是圆心;
②两条边都与圆周相交。
③圆心角性质:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等。在同圆或等圆中,圆心角、圆心角所对的弦、圆心角所对的弧和对应弦的弦心距,四对量中只要有一对相等,其他三对就一定相等。
④一条弧的度数等于它所对的圆心角的度数。
⑤半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>