数学:充要条件的判断方法
1.定义法即借助箭头,箭头所指为必要,箭尾跟着是充分。2.传递性法,根据充要关系的传递性来判断的方法叫传递法。当然充要条件也有传递性。
充分必要条件也即充要条件,意思是说,如果能从命题p推出命题q,而且也能从命题q推出命题P,则称p是q的充分必要条件,且q也是p的充分必要条件。
如果有事物情况A,则必然有事物情况B;如果有事物情况B,则必然有事物情况A,那么B就是A的充分必要条件 ( 简称:充要条件 ),反之亦然 。
p推出q,p是q的充分条件,同时q是p的必要条件,此时p是q的子集。
例如:a、b一正一负推出ab<0,ab<0推出a、b一正一负,则a、b一正一负和ab<0互为充要条件。
编辑推荐:
下载Word文档
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>