数学:充分与必要怎么区分
必要条件:只有P才Q,只有到长城才是好汉,好汉→到长城,只能推出不到长城→不是好汉。充分条件是因为假设条件得出结论,所以否定结论Q就否定条件P(否后否前),必要条件是因为因为条件得出结果,所以否定结果P就否定条件Q(否前否后)。
定义
如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。
生活中常用“如果……,那么……”、“若……,则……”和“只要……,就……”来表示充分条件。例如:
1.如果这场比赛踢平,那么中国男足就能出线。
2.总参命令:若飞机不能降落则直接伞降汶川。
不过生活中使用这些关联词语时人们往往并不考虑必要性。也就是说,满足A,必然B成立时,我们就说,如果A,那么B,或者说只要A,就B。这样就表达了条件的充分性,至于条件A是不是结果B必需的我们没有考虑。例如:只要活着,我就要写作。
从客观上看,不满足“活着”,必然“不能写作”。所以“活着”是“我要写作”的充分条件。但是实际上说话人在说这句话时,他只想表达满足“我活着”时必然“我要写作”。至于“不活着就不能写作”的情况虽然大家都知道,但不是说话人要表达的意思。
所以生活中这些关联词语只是表达条件是充足的、充分的这个意思,而没有考虑必要性,这和逻辑学的严格定义是不同的。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>