数学:如何证明函数连续
首先,函数在该点要有定义;然后,函数在该点要存在极限(即左极限要等于右极限);最后,函数在该点的极限值还必须等于函数在该点的函数值。就是要这三点同时满足,就可以说函数在该点连续。
定义1函数f在点x0的某邻域内有定义,若函数f在点x0有极限且此极限等于该点的函数值,即limf(x)=f(x0),则称f在点x0连续x→x0
f在点x0连续必须满足三个条件:
(1)在点x0的一个邻域内有定义
(2)limf(x)存在x→x0
(3)上述极限值等于函数值f(x0)
编辑推荐:
下载Word文档
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>