电话:0731-83595998
导航

2019军转干行测备考:工程问题如何设特值

来源: 2019-05-06 10:04

          在行测考试当中,许多考生只想做一些简单的自己能够驾驭的题型,那么工程问题就在首选之列。这种题型传统,对特值法的依赖较高,所以会熟练应用特值法,就能够解决很多工程问题。特值法比较灵活,因情况不同设法也不同,今天就讲解一下在工程问题各种的情况中该如何设特值。

一、设什么?

工程问题的基本关系式是W=P×t,题目中往往只给出t,结果还是让求t,那么我们就可以设W或t为特值。设的时候是设一推一,而不是同时设。

二、怎么设?

1. 设W为特值

当题目中出现两个以上完成工作总量且中途效率不变的时间时,设“时间们”的最小公倍数为工作总量。

例1.一项工程,甲、乙合作 12 天完成,乙、丙合作 9 天完成,丙、丁合作 12 天完成,如果甲、丁合作,则完成这项工程需要的天数是:

A.16 B.18 C.24 D.26

【答案】B。此题给出的12天、9天、12天三个时间都是完成工作总量且中途效率不变的时间,此时我们设工作总量为 12和9的最小公倍数为36,则甲+乙=3,乙+丙=4,丙+丁=3。因此甲+丁=(甲+乙)+(丙+丁)-(乙+丙)=3+3-4=2。甲、丁合作完成这个工程需要 36÷2=18天。

2.设P为特值

情况1:当题目中给出或者我们可以推出效率比值时,我们设比值为各自的效率。

例2.甲、乙、丙三个工程队完成一项工作的效率比为 2∶3∶4。某项工程,乙先做了三分之一后,余下交由甲与丙合作完成,3 天后完成工作。问完成此工程共用了多少天?

A.6 B.7 C.8 D.9

【答案】A。题目中已经明确给出,甲、乙、丙三个工程队完成一项工作的效率比为 2∶3∶4,于是我们设甲、乙、丙的效率分别为 2、3、4,甲丙合作 3 ,完成(2+4)×3=18,则工作总量为 18÷2/3 =27,故乙做三分之一用了 9÷3=3 天,即完成此工程共用了 3+3=6 天。

情况2:当团体合作(人数多到不用甲乙丙来表示)时,设每人单位时间内效率为“1”。

例3.建筑公司安排 100 名工人去修某条路,工作 2 天后抽调走 30 名工人,又工作了 5天后再抽调走 20 名工人,总共用时 12 天修完。如希望整条路在 10 天内修完,且中途不得增减人手,则要安排多少名工人?

A.80 B.90 C.100 D.120

【答案】A。此题中工作人数众多,且没有用甲乙丙来表示,我们假设每个工人每天工作量为 1,则这条路的工作量为 100×2+(100-30)×5+(100-30-20)(12-2-5)=800,如果要在 10 天内修完,则要安排 800÷10=80名工人。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端