2020军转干行测数量关系:特值法在利润问题中的应用
一、利润问题基础公式
要解决利润问题,首先我们先回顾一下利润问题的相关公式:
①利润=售价-成本
②利润率=利润÷成本=售价÷成本-1
③售价=成本×(1+利润率)
④打折率=折后价÷折前价
二、特值法的应用
可以用特值法解决的利润问题其实十分容易甄别,当利润、成本、售价、折后价、折前价均没有出现绝对量,比如:成本36元、售价50元、利润14元等。给出的只有相对量,如:利润率15%、打9折。就可以考虑设特值了。
特值如何设其实很简单:
1、若出现利润率,将成本设为整十或整百;
2、若数量也没有给出具体值,在设成本或折前价的同时,可以将数量按照比例设特值。
接下来我们通过两个例子来解释解题思路:
例1:商店有两件进价相同的商品,一件以25%的利润出售,另一件以亏损13%的价格出售,最终这两件商品的利润率为?
这道题通篇的数量只给了利润率和两件商品,在利润、成本、售价这几个量中没有出现具体值,所以可以考虑设特值。出现了利润率,所以将成本设为100,所以第一件商品的利润为100×25%=25元,第二件商品亏损了100×13%=13元,两件商品共获利25-13=12元,所以利润率为12÷(100+100)=6%。
例2:某水果店销售一批水果,按原价出售,利润率为25%,后来按原价的九折出售,结果每天的销量比降价前增加了1.5倍,则打折后每销售这批水果的利润比打折前增加了( )%?
本题中依然没有绝对量,只有利润率和打折率等相对量,所以可以利用特值法求解。题干中有利润率,也有打折率,所以优先设成本。成本为100,则原价为100×(1+25%)=125,九折的价钱为125×0.9=112.5元,数量上也没有具体值,所以可以将数量按照比例设特值,增加1.5倍,所以原数量:现数量=1:2.5,即2:5,所以设为原来卖出2件,打折后卖出5件。接下来只要表示出折前利润,和折后利润就可以求解了。这钱利润为(125-100)×2=50。折后利润为(112.5-100)×5=62.5,所以所求为(62.5-50)÷50=25%。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>