电话:0731-83595998
导航

三角函数专题热点复习指导

来源: 2018-02-05 11:22

   天津市第四十二中学张鼎言

  已知函数f(x)=--sin2x+sinxcosx

  (Ⅰ)求f(-)的值;

  (Ⅱ)设α∈(0,π),f(-)=---,sinα的值。

  解:(Ⅰ)化简f(x),f(x)=-cos2x+-sin2x--

  =sin(2x+-)--

  f(-)=sin---=0

  解:(Ⅱ)f(-)=sin(α+-)--

  =---,

  ∴sin(α+-)=-

  -sinα+-cosα=-

  sinα+-cosα=-

  -cosα=--sinα

  两边平方整理关于sinα的二次方程:

  16sin2α-4sinα-11=0

  ∵α∈(0,π)

  ∴sinα=-

  注:在三角函数的求值、化简及研究三角函数的性质中,公式αsinα+bcosα=-sin(α+φ),tanφ=-ba,起着重要的作用。

  (二)三角函数的图象与性质

  复习导引:这一部分是高考的重点内容。三角函数的研究内容与方法既具有一般函数性质,又有其特殊的性质,周期性突显出来,如第3、9题,从图象角度审视,轴对称、中心对称、成为拟题的载体,如第4、5、6、11题。

  1.设函数f(x)=-cos2ωx+sinωxcosωx+α(其中ω>0,α∈R),且f(x)的图象在y轴右侧的第一个高点的横坐标为-。

  (Ⅰ)求ω的值;

  (Ⅱ)如果f(x)在区间[--,-]上的最小值为-,求α的值。

  解:(Ⅰ)f(x)=-cos2ωx+sinωx·cosωx+α

  =--+-sin2ωx+α

  =-sin2ωx+-cos2ωx+α+-

  =sin(2ωx+-)+α+-

  2ω·■+-=-,ω=-

  (Ⅱ)f(x)=sin(x+-)+α+-

  --≤x≤-

  0≤x+-≤-

  fmin(x)=f(-)=--+α+-=-

  ∴α=-+-

  2.如图,函数y=2sin(πx+φ),(x∈R),(其中0≤φ≤-)的图象与y轴交于点(0,1)。

  (Ⅰ)求φ的值;

  (Ⅱ)设p是图象上的最高点,M、N是图象与x轴的交点,求-与-的夹角。

  解:(Ⅰ)f(0)=2sinφ=1,sinφ=-

  0≤φ≤-∴φ=-

  (Ⅱ)f(x)=2sin(πx+-)

  ∵P为最高点

  ∴πx+-=-,x=-,Q(-,0)

  f(x)周期T=-=2,-=1,|MN|=1,|NQ|=-,|PQ|=2,tanα=-

  cos2α=-=-

  ∴-与-的夹角是arccos-

  3.已知函数f(x)=Asin2(ωx+φ),(A>0,ω>0,0

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端