三角函数专题热点复习指导
天津市第四十二中学张鼎言
已知函数f(x)=--sin2x+sinxcosx
(Ⅰ)求f(-)的值;
(Ⅱ)设α∈(0,π),f(-)=---,sinα的值。
解:(Ⅰ)化简f(x),f(x)=-cos2x+-sin2x--
=sin(2x+-)--
f(-)=sin---=0
解:(Ⅱ)f(-)=sin(α+-)--
=---,
∴sin(α+-)=-
-sinα+-cosα=-
sinα+-cosα=-
-cosα=--sinα
两边平方整理关于sinα的二次方程:
16sin2α-4sinα-11=0
∵α∈(0,π)
∴sinα=-
注:在三角函数的求值、化简及研究三角函数的性质中,公式αsinα+bcosα=-sin(α+φ),tanφ=-ba,起着重要的作用。
(二)三角函数的图象与性质
复习导引:这一部分是高考的重点内容。三角函数的研究内容与方法既具有一般函数性质,又有其特殊的性质,周期性突显出来,如第3、9题,从图象角度审视,轴对称、中心对称、成为拟题的载体,如第4、5、6、11题。
1.设函数f(x)=-cos2ωx+sinωxcosωx+α(其中ω>0,α∈R),且f(x)的图象在y轴右侧的第一个高点的横坐标为-。
(Ⅰ)求ω的值;
(Ⅱ)如果f(x)在区间[--,-]上的最小值为-,求α的值。
解:(Ⅰ)f(x)=-cos2ωx+sinωx·cosωx+α
=--+-sin2ωx+α
=-sin2ωx+-cos2ωx+α+-
=sin(2ωx+-)+α+-
2ω·■+-=-,ω=-
(Ⅱ)f(x)=sin(x+-)+α+-
--≤x≤-
0≤x+-≤-
fmin(x)=f(-)=--+α+-=-
∴α=-+-
2.如图,函数y=2sin(πx+φ),(x∈R),(其中0≤φ≤-)的图象与y轴交于点(0,1)。
(Ⅰ)求φ的值;
(Ⅱ)设p是图象上的最高点,M、N是图象与x轴的交点,求-与-的夹角。
解:(Ⅰ)f(0)=2sinφ=1,sinφ=-
0≤φ≤-∴φ=-
(Ⅱ)f(x)=2sin(πx+-)
∵P为最高点
∴πx+-=-,x=-,Q(-,0)
f(x)周期T=-=2,-=1,|MN|=1,|NQ|=-,|PQ|=2,tanα=-
cos2α=-=-
∴-与-的夹角是arccos-
3.已知函数f(x)=Asin2(ωx+φ),(A>0,ω>0,0
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
-
国家电网30270试题
-
湖南中烟7463试题
-
湖南统招专升本不连网,流畅做题
-
长沙理工大学考研培训4532试题
已有 22658 名学员学习以下课程通过考试
精品课程
更多- 电网书籍
- 财会书籍
- 其它工学书籍
- 电气拼团课程
- 财会拼团课程
- 其它工学拼团
-
- 长理培训微信公众号
- 每日推送精彩考试资讯
长按二维码识别
微信搜索“ 长理培训”
-
- 加入QQ群一起来考国网!
- QQ群号:223940140
点击进入
长理培训客户端 资讯,试题,视频一手掌握
去 App Store 免费下载 iOS 客户端
点击加载更多评论>>