电话:0731-83595998
导航

MBA数学提高一:从数列递推到N球配对问题

来源: 2018-08-17 21:24
  从数列递推到N球配对问题

  本篇给出求简单递推数列通项公式的通用解法,并由此思路解一个老题

  以下记A(N)为数列第N项

  已知A1=1,A(N)=2A(N-1)+1,求数列通项公式

  解:由题意,A(N)+1=2[A(N-1)+1]

  即A(N)+1是以2为首项,2为公比的等比数列

  因此A(N)+1=2^N

  数列通项公式为A(N)=2^N-1

  2、通用算法

  已知A1=M,A(N)=P*A(N-1)+Q,P《》1,求数列通项公式

  解:设A(N)+X=P*[A(N-1)+X]

  解得X=Q/(P-1)

  因此A(N)+Q/(P-1)是以A1+Q/(P-1)为首项,P为公比的等比数列

  由此可算出A(N)通项公式

  3、已知A1和A2,A(N)=P*A(N-1)+Q*A(N-2),求数列通项公式

  解题思路:设A(N)+X*A(N-1)=Y*[A(N-1)+X*A(N-2)]

  代入原式可得出两组解,对两组X,Y分别求出

  A(N)+X*A(N-1)的通项公式

  再解二元一次方程得出A(N)

  注:可能只有一组解,但另有解决办法。

  4、现在用上面的思路来解决一个著名的问题:

  N个球和N个盒子分别编号从1到N,N个球各放入一个盒子,求没有球与盒子编号相同的放法总数。

  解:设A(N)为球数为N时满足条件的放法(以下称无配对放法)总数,

  易知A1=0,A2=1

  当N》2时,一号球共有N-1种放法,假设1号球放入X号盒子

  在剩下的N-1个球和N-1个盒子中,如X号球正好放入1号盒子,

  问题等价于有N-2个球的无配对放法,放法总数为:A(N-2)

  在剩下的N-1个球和N-1个盒子中,如X号球没有放入1号盒子,

  则可以把X号球看作1号球,问题等价于有N-1个球的无配对放法,

  放法总数为:A(N-1)

  因此有A(N)=(N-1)*[A(N-1)+A(N-2)]

  上式可变换为:A(N)-NA(N-1)

  =-[A(N-1)-(N-1)*A(N-2)]

  按等比数列得出:A(N)-NA(N-1)=(-1)^N

  上式除以N!得出:

  A(N)A(N-1)(-1)^N

  -=+-

  N!(N-1)!N!

  把A(N)/N!当作新的数列,把(-1)^N/N!也作为一个数列

  则A(N)等于数列(-1)^N/N!从第二项到第N项的和再乘以N

  另外可得出:

  N球恰有K球与盒子配对的放法总数为:C(N,K)*A(N-K)

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端