电话:0731-83595998
导航

MBA数学提高:解决有关柯西定理的证明题

来源: 2018-10-06 12:04
  先举个例子设函数F(X)在[A,B]连续,在(A,B)可导,且F(A)=F(B)=0,求证存在S属于(A,B),使 S*F(S)+F‘(S)=0 这类问题都可以化成求S,使F(S)=G(S)*F’(S)的问题,解决方法是构造函数。  

  令 G1(X)=-1/G(X)的积分 Q(X)=e^G1(X) 则我们构造出F(X)*Q(X)这个函数,再用柯西定理去解决。  

  试试看,不用再绞尽脑汁去构造函数。  

  文章开头的例子的解法:求S 使S*F(S)+F‘(S)=0 即F(S)=-1/S*F‘(S)令G(X)=-1/X 则G1(X)=-1/G(X)积分=X积分=X*X/2 则Q(X)=e^(X*X/2) 现在我们构造出函数 P(X)=F(X)*Q(X)=F(X)*e^(X*X/2) 则函数P(X)在[A,B]连续,在(A,B)可导,且P(A)=P(B)=0 根据柯西定理,存在一点S,使P’(S)=0 P‘(X)=F(X)*e^(X*X/2)*X+F’(X)*e^(X*X/2) =[X*F(X)+F‘(X)]*e^(X*X/2) 存在S使P’(X)=0,因为e^(X*X/2)《》0 所以S*F(S)+F‘(S)=0 这些通用解法可以节省时间,否则要想出Q(X)=e^(X*X/2)太费劲。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端