电话:0731-83595998
导航

管理类联考数学集合基础知识点要点解析

来源: 2018-08-04 19:41

  集合

  集合是数学中最重要的概念,是整个数学的基础。

  集合的定义是:集合是具有相同性质的元素的集体。这个定义属于循环定义,因为集体就是集合。

  理解是:把一些互不相同的东西放在一起,就组成一个集合。唯一的要求是“互不相同”。集合中的元素可以是毫不相干的。元素可以是个体,也可以是一个集合。

  比如1,2,{1,2}就构成一个集合,集合中有三个元素,两个是个体,一个是集合。元素可以是数对,(x,y)是一个数对,代表二维坐标系中的一个点。如果集合中的元素没有共同的特征,要完整地描述一个集合,我们被迫列出集合中的每一个元素,如{一阵风,一匹马,一头牛};如果存在相同的特征,描述就简单多了,如{所有正整数}、{所有英国男人}、{所有四川的下过马驹的红色的母马},不用一一列举。

  区间是特殊的集合,专门用来表示某些连续的实数的集合。集合在逻辑中的应用也十分广泛,学好了集合,数学和逻辑都能提高,起到“两个男人并排坐在石头上”的作用。

  集合中元素的个数是集合的重要特征。如果两个集合的元素能有一一对应的关系,那么这两个集合元素的个数就是相等的。

  在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1,2,3,4,5)的元素个数相等,所以我们才说物品共有5个。

  集合分为有限集合和无限集合,元素的个数一般是针对有限集合说的。

  对无限集合来说,有很多不同之处。比如{所有的正整数}与{所有的正偶数},后者只是前者的一个子集,但两者存在一一对应的关系,因此元素个数“相等”。而{所有整数}与{所有实数}则不可能建立一一对应的关系,因为它们的无限的级别是不同的。对两个无限集合,我们只强调是否能一一对应,不说元素个数是否相等。

  两个集合有交集和并集的关系。交集是同时在两个集合中的所有元素的集合。

  例如{中国人}交{男人}={中国男人},{韩国俊男}交{韩国美女}={河利秀}。并集是在其中任一个集合中的所有元素的集合。因为集合中的元素不能重复,所以取并集时要去掉重复了的元素,A并B的元素个数=A的元素个数+B的元素个数-A交B的元素个数。

  函数

  如果集合A中的每一个元素,按照某种对应关系,在集合B中都有唯一的对应元素,那么这种对应关系被称为A到B的函数。

  例如Y=2X,Y=X^2都建立了{全体实数}到{全体实数}的函数关系,如果用f代表对应关系,则函数表述为:f(x)=2x,f(x)=x^2。如果A中的某些元素,不能对应B中唯一的元素,则不存在函数关系。比如{所有小偷}与{所有失主},因为某些小偷偷过很多不同失主的东西。

  函数的定义域和值域。MBA数学只考虑实数。所有能使函数有意义的实数的集合,构成函数的定义域,即上面的集合A。

  F(X)=X^(1/2)定义域为{X/X》=0},F(X)=1/X定义域为{X/X《》=0},F(X)=LN(X)定义域为{X/X》0}。

  如果函数中同时包括几类简单函数,则定义域是各类函数定义域的交集。

  定义域按照对应关系,能对应的所有实数的集合,构成函数的值域。定义域、对应关系、值域,三者构成一个函数。定义域中的每一个元素,与其在值域中对应的元素,组成一个数对,由二维坐标系中的一个点来表示。所有这样的点形成了函数的图象。

  图象能直观地表现函数的对应关系,大家应该熟悉幂函数、指数函数、对数函数的基本图象。要求高的同学可以进一步掌握图象的平移、反射、旋转。

  奇函数和偶函数的定义不说了,要注意的是奇函数和偶函数的定义域必须关于原点对称。

  F(X)=X,X为任意实数是奇函数,如果限定X属于[-3,5],那函数就不是奇函数了。反函数。如果集合A中的每一个元素,按照某种对应关系,在集合B中都有唯一的对应元素;而B中的每一个元素,在A中都有唯一的元素与之对应。则A到B的对应关系是可逆的,A到B的对应关系是原函数,B到A的对应关系是反函数。

  对于连续的函数来说,只有绝对增函数或绝对减函数,才存在反函数,否则A中必有两个元素,在B中对应同一元素。对于不连续的函数则没有上述限制。

  复合函数。集合A中的元素,按一种函数对应到集合B,B中的相应元素,再按另一种函数对应到集合C,最后形成集合A到集合C的对应关系,称为复合函数。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端