数学1:函数三要素
函数三要素
(1)核心–;–;对应法则等式y=f(x)表明,对于定义域中的任意x,在“对应法则f”的作用下,即可得到y.因此,f是使“对应”得以实现的方法和途径。是联系x与y的纽带,从而是函数的核心。对于比较简单的函数,对应法则可以用一个解析式来表示,但在不少较为复杂的问题中,函数的对应法则f也可以采用其他方式(如图表或图象等)。
(2)定义域定义域是自变量x的取值范围,它是函数的一个不可缺少的组成部分,定义域不同而解析式相同的函数,应看作是两个不同的函数。 在中学阶段所研究的函数通常都是能够用解析式表示的。如果没有特别说明,函数的定义域就是指能使这个式子有意义的所有实数x的集合。在实际问题中,还必须考虑自变量所代表的具体的量的允许取值范围问题。
(3)值域值域是全体函数值所组成的集合。在一般情况下,一旦定义域和对应法则确定,函数的值域也就随之确定。因此,判断两个函数是否相同,只要看其定义域与对应法则是否完全相同,若相同就是同一个函数,若定义域和对应法则中有一个不同,就不是同一个函数。 同一函数概念。构成函数的三要素是定义域,值域和对应法则。而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>