数学1:无穷级数
无穷级数
1、掌握级数的基本性质及其级数收敛的要条件,掌握几何级数与p级数的收敛性掌握比值审敛法,会用正项级数的比较与根值审敛法。
2、会用交错级数的莱布尼兹定理,了解绝对收敛和条件收敛的概念及它们的关系。
3、会求幂级数的和函数以及数项级数的和,掌握幂级数收敛域的求法。
4、掌握e的x次方、sinx、cosx、ln(1+x),(1+x)的a次方的马克劳林展开式,会用它们将简单函数作间接展开会将定义在[-L,L]上的函数展开为傅立叶级数,会将定义在上的函数展开为正弦级数和余弦函数。
重点是数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,绝对收敛与条件收敛的概念。幂级数的收敛半径、收敛区间的求法,将函数展成傅立叶级数。难点是求幂级数的和函数,将函数展成幂级数、傅立叶级数。
编辑推荐:
下载Word文档
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>