2020军队文职人员招聘数学3知识点:平面向量的数量积
已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2
数量积具有以下性质:
- a·a=|a|2≥0
- a·b=b·a
- k(a·b)=(ka)b=a(kb)
- a·(b+c)=a·b+a·c
- a·b=0<=>a⊥b
- a=kb<=>a//b
- e1·e2=|e1||e2|cosθ
编辑推荐:
下载Word文档
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>