解放军文职招聘考试李冶
李冶
一、李冶生平
李冶(1192—1279),金元之际数学家.字仁卿,号敬斋,真定府栾城县(今河北栾城)人.
李冶生于大兴(今属北京),父亲李遹为大兴府推官.李冶自幼天资明敏,喜爱读书,曾在元氏县(今河北元氏)求学,对文学、数学、经学都感兴趣.正大七年(1230)在洛阳考中词赋科进士,出任钧州(今河南禹县)知事,为官清廉、正直.开兴元年(1232),因钧州城被蒙古军队攻破,李冶北渡黄河避难,定居于崞山(今山西崞县)之桐川.
李冶在桐川的生活十分艰苦,不仅居室狭小,且常不得温饱,要为衣食而奔波.但他却在这里进行着顽强的学术研究.正像他的学生焦养直所说“虽饥寒不能自存,亦不恤也”,在“流离顿挫”中“亦未尝一日废其业”.李冶的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学.他不仅博览群书,而且善于去粗取精,批判地接受前人知识.他说:“学有三,积之之多不若取之之精,取之之精不若得之之深.”李冶在实践中逐渐认识到:“数术虽居六艺之末,而施之人事,则最为切务.”于是潜心数学.他指出:“谓数为难穷,斯可;谓数为不可穷,斯不可.何则?彼其冥冥之中,固有昭昭者存.”他认为数来源于自然,所谓“昭昭者”,乃是数中的“自然之理”,“苟能推自然之理,以明自然之数,则虽远而乾端坤倪,幽而神情鬼状,未有不合者矣.”他在桐川得到洞渊算书,内有九容之说,专讲勾股容圆(即切圆)问题.于是,他便以洞渊九容为基础,讨论了在各种条件下用天元术求圆径的问题,于1248年写成《测圆海镜》十二卷,这是他一生中的最大成就.
1251年,李冶结束避难生活,回元氏县封龙山定居,并收徒讲学.1257年,他在开平(今内蒙古正蓝旗)接受忽必烈召见,提出一些开明的政治建议.1259年,李冶写成另一部数学著作《益古演段》.至元二年(1265),李冶应忽必烈之聘,赴京(即中都,今北京)担任翰林学士知制诰同修国史官职,因感到在翰林院思想不自由,第二年辞职还乡.晚年又著《敬斋古今黈(音tǒu)》、《泛说》等书.至元十六年(1279)病逝于元氏.
二、《测圆海镜》
《测圆海镜》是现存最早的一部以天元术为主要内容的著作.天元术虽在北宋已经产生,但直到李冶之前还不成熟,记号混乱、复杂,演算烦琐,甚至不懂得用统一符号表示未知数的不同次幂.李冶致力于改进天元术,使之简便而实用.《测圆海镜》就是他长期研究天元术的成果.
《测圆海镜》卷一的圆城图式是全书出发点.该图以一个直角三角形及其内切圆为基础,通过若干互相平行或垂直的直线,构成16个直角三角形(图8.6).书中题目都是已知某些三角形边长,求圆径.卷一的“识别杂记”阐明了各勾股形边长及其与圆径的关系,共600余条,每条可看作一个定理或公式,这部分内容是对中国古代勾股容圆问题的总结.卷二到十二为习题,共170题.全书基本上是一个演绎体系,卷一包含了解题所需的基本理论,后面各卷问题的解法均可在此基础上以天元术为工具推导出来.
李冶的天元术分为三步:首先“立天元一”,这相当于设未知数x;然后寻找两个等值的且至少有一个含天元的多项式(或分式);最后把两个多项式(或分式)连为方程,通过相消,化成标准形式
anxn+an-1xn-1+…+a1x+a0=0.
李冶称方程式为天元式,在《测圆海镜》中采用由高次幂到低次幂上下排列的顺序,式中只标“元”或“太”一个字,元代表一次项,太代表常数项,负系数加一斜线,零系数标数码○.例如
-x2+320x-132800+13056000x-1=0
和 -414x2+478584=0
分别写为图8.7和图8.8的形式.下面以卷四第六问为例,用现代符号表出李冶的解题过程.
已知:a3=200,c11=170.
求:D.
解:由识别杂记,得b15=a3-c11=30.
设半径为x,则
b11=x+b15=x+30,
a11=a3-x=200-x,
a1=a3+x=200+x.
因为△1∽△11,所以
所以 D2=2b10×a11=6x2-340x+12000.
又因为 D2=(2x)2=4x2,
所以 4x2=6x2-340x+12000.
相消(相当于移项,合并同类项),得
2x2-340x+12000=0,
即 x2-170x+6000=0.
解方程,得
x=120.
所以 D=2×120=240.
《测圆海镜》的理论成果是巨大的.宋代以前,方程理论一直受几何思维束缚,如常数项只能为正,因为常数项通常是表示面积、体积等几何量的;方程次数不高于三次,因为超过三次的方程就难于找到几何解释了.宋代天元术的产生,标志着方程理论有了独立于几何的倾向,李冶对天元术的总结,则使方程理论基本上摆脱了几何思维的束缚,实现了程序化.李冶认识到代数计算可以不依赖于几何,方程的二次项不一定表示面积,三次项也不一定表示体积.他在《测圆海镜》中改变了传统的把实(常数项)看作正数的观念,常数项可正可负.书中用天元术列出许多高次方程,包括三次、四次和六次方程.李冶还处理了分式方程,他是通过方程两边同乘一个整式的方法,化分式方程为整式方程的.当方程各项含有公因子xn(n为正整数)时,李冶便令次数最低的项为实,其他各项均降低这一次数.
在《测圆海镜》中,李冶采用了从零到九的完整数码,发明了负号和一套相当简明的小数记法.其负号是画在数字上的一条斜线,通常画在最后一位有效数字上,如-340写作 .纯小数于个位处写○,带小数于个位数下写单位,如0.25记作 ,5.76记作 .这样,李冶的方程便可用符号表示,从而改变了用文字描述方程的旧面貌.但仍缺少运算符号,尤其是没有等号.这样的代数,可称为半符号代数.大约300年后,类似的半符号代数也在欧洲产生.“天元一”虽是文字形式,但它是代表各种未知数的一般的、抽象的文字,在本质上也可看作符号.另外,李冶在圆城图式中以一般性文字代表三角形顶点,与西方用字母表示几何点的作法类似.
《测圆海镜》的成书标志着天元术成熟,不久以后,王恂、郭守敬(1231—1316)在编《授时历》时,便用天元术求周天弧度,沙克什则用天元术解决水利工程中的问题,都收到良好效果.元代数学家朱世杰曾说:“以天元演之,明源活法,省功数倍.”以《测圆海镜》为代表的天元术理论,对后世数学影响很大.李冶死后,天元术经二元术、三元术,迅速发展为四元术,成功地解决了四元高次方程组的建立和求解问题,达到宋元数学的顶峰.
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>