2018军队文职招聘理工学大纲参考:向量
【向量】
主要测查应试者对向量组的线性相关性和秩、线性方程组解的结构、向量空间、欧几里得(Euclid)空间的掌握程度。
要求应试者理解n维向量、向量的线性组合、线性表示、向量组的线性相关、线性无关、极大线性无关组、向量组的秩、向量组等价、n维向量空间、子空间、基底、维数、坐标、基变换和坐标变换公式、过波矩阵、内积、规范正交基、正交矩阵等概念,掌握向量组线性相关、线性无关的性质及失IJ别洼,向量组的极大线性无关组及秩的计算,矩阵的秩与其行(列)向量组的秩之间的关系、线性无关向量组正交规范化的施密特(Schmidt)方法、正交变换的性质等基本理论和方怯。
本章内容主要包括向量的概念、向量的线性组合与线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组、等价向量组、向量组的秩、向量组的秩与矩阵的秩之间的关系、向量空间及其相关概念、n维向量空间的基变换和坐标变换、过液矩阵、向量的内积、线性无关向量组的正交规范化方法、规范正交基、正交矩阵及其性质。
第一节 向量组及其线性相关性
一、n维向量
n维向量;分量;零向量;n维单位向量。
二、向量由向量组的线性表示
矩阵的列向量组、行向量组;线性组合;向量的线性表示;向量线性表示的充要条件。
三、向量组的线性相关性
线性相关、线性无关;线性无关的充要条件、充分条件、必要条件;线性相关与线性表示的内在联系;初等行(列)变换与矩阵列(行)向量组的线性相关性。
第二节 向量组的秩
一、等价向量组
两个向量组的等价;一个向量组被另一个向量组线性表示的充要条件、充分条件、必要条件;向量组等价的充要条件。
二、向量组的极大线性无关组及秩
向量组的极大线性无关组;极大线性无关组的等价定义;向量组的秩;矩阵的列秩、行秩与秩的关系。
第三节 向量空间
一、向量空间的概念
向量空间;运算的封闭性;零空间;生成的向量空间;于空间。
二、向量空间的基与维数
基;维数;n维向量空间;自然基;坐标。三、基变换和坐标变换过波矩阵;基变换公式;坐标变换公式。
第四节 n维欧几里得空间
一、向量的内积
实向量的内积;n维欧几里得空间;内积的性质;长度(范数);长度的性质;向量的夹角;正交。
二、正交向量组
正交向量组;标准正交向量组;正交向量组的性质;正交基;规范正交基;施密特正交化方法。
三、正交矩阵与正交变换
正交矩阵;正交矩阵的充要条件;正交变换;正交变换的性质。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>