2020云南农村信用社数量关系:排列组合的常用方法
一、优限法
(一)含义
对于有限制条件的元素(或位置),在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。
(二)例题解析
例:甲、乙、丙、丁、戊五个人排成一列,其中甲不站在头或尾的位置,共有多少种不同的排列方法?
解析:甲是这5个人里面有限制条件的元素,所以就优先考虑甲。让他站在除头尾以外的中间的3个位置,有3种选择;然后仔安排除甲以外的另外4个人,有A4 4=24种方法。所以最终共有3×24=72种方法。
二、捆绑法
(一)含义
在解决对于某几个元素要求相邻的问题时,先相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略。
(二)例题解析
例:甲、乙、丙、丁、戊五个人排成一列,其中甲乙必须相邻,共有多少种不同的排列方法?
解析:甲乙要求相邻,将甲乙捆绑变为一个大元素进行排序,这五个人变为4个元素,全排列共有A4 4=24种方法,甲乙内部两个人可以更换位置,共A2 2=2种方法。所以总共2×24=48种方法。
例:图书管理员要整理书籍,现在有3本教育类书籍,4本艺术类书籍,5本化学类书籍。把他们整理在同一层书架,且同类的书籍必须摆在一起,共有多少种不同的方法?
解析:同类书籍必须摆在一起,属于元素相邻的问题,所以使用捆绑法。把这些有相邻要求的元素捆绑为3个大元素排列,然后再考虑各个大元素内部元素的排序,共有A3 3A3 3A4 4A5 5=103680种方法。
三、插空法
(一)含义
插空法就是先将其他元素排好,再要求不相邻的元素插入它们的间隙或两端位置。
(二)例题解析
例:甲、乙、丙、丁、戊五个人排成一列,其中甲乙不相邻,共有多少种不同的排列方法?
解析:甲乙要求不相邻,属于插空问题。先把其他三个元素进行排序,共A3 3=6种方法,在将甲乙插空进去丙丁戊包含两端的4个位置,有A4 2=12种方法。所以总共的方法有6×12=72种。
例:将5盆红花和3盆黄花摆在一排,这些花除了颜色,其他都一样,要求黄花不相邻,共有最终多少种方法?
解析:因为黄花要求不相邻,所以考虑插空法。先把红花摆好,红花长得一样,所以无论怎么摆放都是一样的,只有一种方法。 因为黄花也长得一样,所以将黄花插空进去红花的6个空,共有C3 6=20种方法。
(一)含义
对于有限制条件的元素(或位置),在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。
(二)例题解析
例:甲、乙、丙、丁、戊五个人排成一列,其中甲不站在头或尾的位置,共有多少种不同的排列方法?
解析:甲是这5个人里面有限制条件的元素,所以就优先考虑甲。让他站在除头尾以外的中间的3个位置,有3种选择;然后仔安排除甲以外的另外4个人,有A4 4=24种方法。所以最终共有3×24=72种方法。
二、捆绑法
(一)含义
在解决对于某几个元素要求相邻的问题时,先相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略。
(二)例题解析
例:甲、乙、丙、丁、戊五个人排成一列,其中甲乙必须相邻,共有多少种不同的排列方法?
解析:甲乙要求相邻,将甲乙捆绑变为一个大元素进行排序,这五个人变为4个元素,全排列共有A4 4=24种方法,甲乙内部两个人可以更换位置,共A2 2=2种方法。所以总共2×24=48种方法。
例:图书管理员要整理书籍,现在有3本教育类书籍,4本艺术类书籍,5本化学类书籍。把他们整理在同一层书架,且同类的书籍必须摆在一起,共有多少种不同的方法?
解析:同类书籍必须摆在一起,属于元素相邻的问题,所以使用捆绑法。把这些有相邻要求的元素捆绑为3个大元素排列,然后再考虑各个大元素内部元素的排序,共有A3 3A3 3A4 4A5 5=103680种方法。
三、插空法
(一)含义
插空法就是先将其他元素排好,再要求不相邻的元素插入它们的间隙或两端位置。
(二)例题解析
例:甲、乙、丙、丁、戊五个人排成一列,其中甲乙不相邻,共有多少种不同的排列方法?
解析:甲乙要求不相邻,属于插空问题。先把其他三个元素进行排序,共A3 3=6种方法,在将甲乙插空进去丙丁戊包含两端的4个位置,有A4 2=12种方法。所以总共的方法有6×12=72种。
例:将5盆红花和3盆黄花摆在一排,这些花除了颜色,其他都一样,要求黄花不相邻,共有最终多少种方法?
解析:因为黄花要求不相邻,所以考虑插空法。先把红花摆好,红花长得一样,所以无论怎么摆放都是一样的,只有一种方法。 因为黄花也长得一样,所以将黄花插空进去红花的6个空,共有C3 6=20种方法。
温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)
点击加载更多评论>>