长理培训•云南
导航

2020云南农村信用社数量关系:排列组合的常用方法

来源: 2019-10-25 21:30
一、优限法

(一)含义

对于有限制条件的元素(或位置),在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。

(二)例题解析

例:甲、乙、丙、丁、戊五个人排成一列,其中甲不站在头或尾的位置,共有多少种不同的排列方法?

解析:甲是这5个人里面有限制条件的元素,所以就优先考虑甲。让他站在除头尾以外的中间的3个位置,有3种选择;然后仔安排除甲以外的另外4个人,有A4 4=24种方法。所以最终共有3×24=72种方法。

二、捆绑法

(一)含义

在解决对于某几个元素要求相邻的问题时,先相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略。

(二)例题解析

例:甲、乙、丙、丁、戊五个人排成一列,其中甲乙必须相邻,共有多少种不同的排列方法?

解析:甲乙要求相邻,将甲乙捆绑变为一个大元素进行排序,这五个人变为4个元素,全排列共有A4 4=24种方法,甲乙内部两个人可以更换位置,共A2 2=2种方法。所以总共2×24=48种方法。

例:图书管理员要整理书籍,现在有3本教育类书籍,4本艺术类书籍,5本化学类书籍。把他们整理在同一层书架,且同类的书籍必须摆在一起,共有多少种不同的方法?

解析:同类书籍必须摆在一起,属于元素相邻的问题,所以使用捆绑法。把这些有相邻要求的元素捆绑为3个大元素排列,然后再考虑各个大元素内部元素的排序,共有A3 3A3 3A4 4A5 5=103680种方法。

三、插空法

(一)含义

插空法就是先将其他元素排好,再要求不相邻的元素插入它们的间隙或两端位置。

(二)例题解析

例:甲、乙、丙、丁、戊五个人排成一列,其中甲乙不相邻,共有多少种不同的排列方法?

解析:甲乙要求不相邻,属于插空问题。先把其他三个元素进行排序,共A3 3=6种方法,在将甲乙插空进去丙丁戊包含两端的4个位置,有A4 2=12种方法。所以总共的方法有6×12=72种。

例:将5盆红花和3盆黄花摆在一排,这些花除了颜色,其他都一样,要求黄花不相邻,共有最终多少种方法?

解析:因为黄花要求不相邻,所以考虑插空法。先把红花摆好,红花长得一样,所以无论怎么摆放都是一样的,只有一种方法。 因为黄花也长得一样,所以将黄花插空进去红花的6个空,共有C3 6=20种方法。

温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)

直播课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
相关推荐
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端