电话:0731-83595998
导航

公检法文职行测答题技巧:和定极值问题

来源: 2017-06-12 14:11

 和定极值问题是极值问题中的一种题型,无论是在国考还是在省考的行测中能有效提高解题速度,下面立正招警考试网以一个简单的例子向大家说明。

和定极值问题解题的基本原则:几个数的和一定,要想某个数最大,其它的数就要尽可能小;同理,要想某个数最小,其它的数就要尽可能大。这是解决和定极值问题的根本原则。下面我们通过一个例子来体会一下:

例:将26个苹果分给5个同学,每位同学分得的苹果数各不相同。

问题1:分得苹果数最多的同学最多得到多少个苹果?

【立正解析】此题的特征为总量一定,求某个数的最大值,即和定极值问题。我们用a1,a2,a3,a4,a5分别代表5位同学分得的苹果数目并且假设这5个数依次递增。根据和定极值问题的原则,要使分得苹果数最多的(即a5)最多,就要使其它同学分得的尽量少,此时想到极限情况是:a1,a2,a3,a4分别为1,2,3,4个苹果,故26-(1+2+3+4)=16个。

问题2:分得苹果数最少的同学最少分得多少个苹果?

【立正解析】极端考虑,显然为1。

问题3:分得苹果数最多的同学最少分得多少个苹果?

【立正解析】此题的特征为总量一定,求某个数的最大值,即和定极值问题。我们仍然用a1,a2,a3,a4,a5分别代表5位同学分得的苹果数目并且假设这5个数依次递增。现在让我们求a5的最小值,需要让其余数尽量大,但是每个数大的程度都受到后一个数的影响,此时我们采用列方程的方法来解,设a5为x个苹果,则有(x-4+x-3+x-2+x-1+x)=26,解得x=7余1,这里余下的一个一定分给a5,所以分得苹果数最多的同学最少分得8个。

问题4:分得苹果数最少的同学最多分得多少个苹果?

【立正解析】此问题解题思路和问题3的解法相同,设a1为x,最终求得x=3。

上面1、2属于同向极值问题,相对来说比较简单,通常我们用逆向考虑方式就可直接得出结果,3、4属于逆向极值问题,刚才我们在解决这两个问题时是用到了方程思想来解的,立正教育专家提醒考生注意:在用方程思想解和定极值时,问谁就以谁为中心,设其为x,这样会比较简单。

再来看一道例题:

例:5个人体重之和是423斤,且均为各不相同的整数,问最轻的人最重为多少斤?

【立正解析】依然用a1,a2,a3,a4,a5分别代表5个人的体重,且依次递增。根据题意设a1为x,则表示为:

a1 a2 a3 a4 a5

↓ ↓ ↓ ↓ ↓

x x+1 x+2 x+3 x+4

那么x+x+1+x+2+x+3+x+4=423,解得x=82余3,余下的3斤分给三个较重的人,故最轻的最重为82斤。

以上是立正教育专家介绍的和定极值问题的解题原则及解决方法,主要针对的是简单的和定极值问题。实际上,对于和定极值问题也有一些变形题,考生在学习过程中要多思考,多总结,这样才能从容应对!

 

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端