公检法文职行测答题技巧:如何用中国剩余定理快速解题
【基础理论】
1、中国剩余定理的通用形式
某数除以A余a,除以B余b,除以C余c……求这个数。
例如:一个小于50的数字,除以7余1,除以5余4,除以9余4,这个数是多少?
2、中国剩余定理的求解方法
(1)余同加余--X=除数公倍数+余数
【例】X除以8余3,除以6余3,且X在20~30之间,求X。
立正解析:题目中,余数都是3,所以说余数相同,此时X=除数公倍数+余数,即X=24n+3,由于X在20~30之间,所以X=27。
注:除数公倍数等于其最小公倍数的N倍
(2)差同减差--X=除数公倍数-差(差为除数和余数的差)
【例】X除以6余3,除以5余2,且X在20~30之间,求X。
立正解析:题目中,除以6余3,说明除数和余数之差为3,同理除以5余2,除数与余数之差也为3,所以说差相同。此时X=除数公倍数-差,即X=30n-3,而X在20~30之间,所以X=27。
(3)和同加和--X=除数公倍数+和(和为除数和余数的和)
【例】X除以5余2,除以4余3,且X在20~30之间,求X。
立正解析:题目中,除以5余2,则除数和余数之和为7,同理除以4余3,除数和余数之和也为7,所以说和相同。此时X=除数公倍数+和,即X=20n+7,而X在20~30之间,则X=27。
(4)逐步满足法(从除数最大的开始满足)
【例】X除以5余2,X除以8余3,求X最小为多少
立正解析:题目中,余数、和、差都不相同,则考虑逐步满足法,从除数大的即除数为8开始,满足除以8余3的有11,19,27,而只有到27才满足除以5余2,所以X=27。
了解基本方法后,我们来看几个真题熟悉一下中国剩余定理的考核。
【真题再现】某校二年级全部共3个班的学生排队,每排4人,5人或6人,最后一排都只有2人,这个学校二年级有( )名学生。
A.120 B.122 C.121 D.123
【答案】B。最后一排都剩2人,说明余数相同,则属于余同加余的情况,人数=4、5、6的公倍数+2=60n+2,答案符合的只有B。另解:5人一排剩2人,说明除以5余2,答案只有B符合。
【真题再现】某歌舞团在大厅列队排练,若排成7排则多2人,排成5排则多4人,排成6排则多3人,问该歌舞团共有多少人?
A.102 B.108 C.115 D.219
【答案】D。观察题干,即人数除以7余2,除以5余4,除以6余3,属于和同加和的情况,和都为9,则人数=7、5、6的公倍数+和=210n+9,答案符合条件的只有D。另解:排成5排多4人,说明除以5余4,答案只有D符合
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>