公检法文职4.23招警考试行测数量关系讲解:拉灯问题
1、初等拉灯问题--倍数、约数
例1:走廊里有10盏电灯,从1到10编号,开始时电灯全部关闭。有10个学生依次通过走廊,第1个学生把所有的灯绳都拉了一下,第2个学生把2的倍数号的灯绳都拉了一下,第3个学生把3的倍数号的灯绳都拉了一下……第10个学生把第10号灯的灯绳拉了一下。假定每拉动一次灯绳,该灯的亮与不亮就改变一次。试判定:当这10个学生通过走廊后,走廊里有多少盏灯是亮的?
A.2 B.3 C.4 D.5
【立正解析】
(1)原来电灯全部关闭,拉一下,亮着;拉两下,灭了;拉三下,亮着。因此,灯绳被拉动奇数次的灯亮着。
(2)可从比较简单的情况考虑,把拉过某号的学生号码写出来寻找规律,如1号是第1个学生拉过,4是1,2,4号拉过,6是1,2,3,4号学生拉过,10是1,2,5,10号学生拉过,也就是第i号灯的灯绳被拉的次数就是i的所有约数的个数。由自然数因数分解的性质知,只有当i是平方数时,i的约数的个数才是奇数,所以只有1,4,9号灯亮着。本题答案:1,4,9号灯亮着,共有3盏灯。选B。
总结:此类拉灯问题比较简单,假如把数字扩大看起来会很麻烦,但思路还是相同的,在做题是要擅长归纳总结,提炼出基本模型。
2、拉登难题--三集合容斥原理型
例2:有1000盏亮着的灯,各有一个拉线开关控制着。现按其顺序编号为1、2、3、4、5······1000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,比较后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的电灯有多少盏?
A.468 B.499 C.501 D.532
【立正解析】
(1) 原来电灯亮着,拉一下,灭了;拉两下,亮着;拉三下,灭了。因此,灯绳被拉动奇数次的灯灭了。此题先求灭着的灯的数量,再求亮着的灯。(2) 注意:此题目拉灯的方法不同前三个例题。编号为2的倍数,3的倍数,5的倍数的灯依次拉。可以据此,看做是三集合问题。(3) 数据计算:能被2整除的有1000/2=500个,能被3整除的有1000/3=333个,能被5整除的有1000/5=200个;既能被2又能被3整除的有1000/6=166个;同理,能被2,5整除的有100个,能被3,5整除的有66个,能同时被2、3、5整除的有33个。拉奇数次500+333+200-2(166+100+66)+4*33=501个,比较开始为亮,奇数次为灭,则亮灯=1000-501=499个,选择B。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>