招警行测答题技巧:同余特性巧解不定方程
一、同余系
整数a除以整数b,得到正余数为c,c±kb(k为自然数)均为a除以b的余数。,属同余系。例:-2,1,4,7都属于16÷3的余数。
二、同余特性
性质一:余数的和决定和的余数
例:13÷4…1,21÷4…1,余数的和为2,和为13+21=34,34÷4…2,所以说余数的和决定和的余数。
性质二:余数的差决定差的余数
例:15÷4…3,22÷4…2,余数的差为-1,差为22-15=7,7÷4…3(相当于余-1),所以说余数的差决定差的余数。
性质三:余数的积决定积的余数
例:30÷4…2,18÷4…2,余数的积为4,积为30×18=540,540÷4…0,余数为0,余数的积为4,4÷4…0,所以说余数的积决定积的余数,而不是等于。
性质四:余数的幂决定幂的余数
例:53÷3=125÷3…2,5÷3余数为2,余数的幂为23=8,8÷3…2,所以余数的幂决定幂的余数。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>